Subgroups of Free Products with Amalgamated Subgroups: A Topological Approach

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subgroups of Free Topological Groups and Free Topological Products of Topological Groups

Introduction Our objectives are topological versions of the Nielsen-Schreier Theorem on subgroups of free groups, and the Kurosh Theorem on subgroups of free products of groups. It is known that subgroups of free topological groups need not be free topological [2, 6, and 9]. However we might expect a subgroup theorem when a continuous Schreier transversal exists, and we give such a result in th...

متن کامل

Some Nonprojective Subgroups of Free Topological Groups

For the free topological group on an interval [a, b] a family of closed, locally path-connected subgroups is given such that each group is not projective and so not free topological. Simplicial methods are used, and the test for nonprojectivity is nonfreeness of the group of path components. Similar results are given for the abelian case. Introduction. Let F(X) be the free topological group on ...

متن کامل

Fixed Subgroups of Endomorphisms of Free Products

Let G = ∗ i=1 Gi and let φ be a symmetric endomorphism of G. If φ is a monomorphism or if G is a finitely generated residually finite group, then the fixed subgroup Fix(φ) = {g ∈ G : φ(g) = g} of φ has Kurosh rank at most n.

متن کامل

Frobenius Subgroups of Free Profinite Products

We solve an open problem of Herfort and Ribes: Profinite Frobenius groups of certain type do occur as closed subgroups of free profinite products of two profinite groups. This also solves a question of Pop about prosolvable subgroups of free profinite products.

متن کامل

Near Frattini Subgroups of Certain Generalized Free Products of Groups

Let G = A ∗H B be the generalized free product of the groups A and B with the amalgamated subgroup H. Also, let λ(G) and ψ(G) represent the lower near Frattini subgroup of G and the near Frattini subgroup of G respectively. We show that G is ψ−free provided: (i) G is any ordinary free product of groups; (ii) G = A ∗H B and there exists an element c in G\H such thatH ∩H = 1; (iii) G = A ∗H B and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1973

ISSN: 0002-9947

DOI: 10.2307/1996621