Subellipticity of the $\bar \partial$-Neumann problem on nonpseudoconvex domains
نویسندگان
چکیده
منابع مشابه
The Neumann Problem on Lipschitz Domains
Au — 0 in D; u = ƒ on bD9 where ƒ and its gradient on 3D belong to L(do). For C domains, these estimates were obtained by A. P. Calderón et al. [1]. For dimension 2, see (d) below. In [4] and [5] we found an elementary integral formula (7) and used it to prove a theorem of Dahlberg (Theorem 1) on Lipschitz domains. Unknown to us, this formula had already been discovered long ago by Payne and We...
متن کامل∂̄b-NEUMANN PROBLEM ON NONCHARACTERISTIC DOMAINS
We study the ∂̄b-Neumann problem for domains Ω contained in a strictly pseudoconvex manifold M2n+1 whose boundaries are noncharacteristic and have defining functions depending solely on the real and imaginary parts of a single CR function w. When the Kohn Laplacian is a priori known to have closed range in L2, we prove sharp regularity and estimates for solutions. We establish a condition on the...
متن کاملthe problem of divine hiddenness
این رساله به مساله احتجاب الهی و مشکلات برهان مبتنی بر این مساله میپردازد. مساله احتجاب الهی مساله ای به قدمت ادیان است که به طور خاصی در مورد ادیان ابراهیمی اهمیت پیدا میکند. در ادیان ابراهیمی با توجه به تعالی خداوند و در عین حال خالقیت و حضور او و سخن گفتن و ارتباط شهودی او با بعضی از انسانهای ساکن زمین مساله ای پدید میاید با پرسشهایی از قبیل اینکه چرا ارتباط مستقیم ویا حداقل ارتباط وافی به ب...
15 صفحه اولGlobal C∞ Irregularity of the ∂̄–neumann Problem for Worm Domains
where ρ is a defining function for Ω, = ∂̄∂̄∗ + ∂̄∗∂̄, u, f are (0, 1) forms, and denotes the interior product of forms. Under the stated hypotheses on Ω, this problem is uniquely solvable for every f ∈ L(Ω). The Neumann operator N , mapping f to the solution u, is continuous on L(Ω). The Bergman projection B is the orthogonal projection of L(Ω) onto the closed subspace of L holomorphic functions o...
متن کاملA Remark on Irregularity of the ∂-neumann Problem on Non-smooth Domains
It is an observation due to J.J. Kohn that for a smooth bounded pseudoconvex domain Ω in C there exists s > 0 such that the ∂-Neumann operator on Ω maps W s (0,1)(Ω) (the space of (0, 1)-forms with coefficient functions in L -Sobolev space of order s) into itself continuously. We show that this conclusion does not hold without the smoothness assumption by constructing a bounded pseudoconvex dom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1985
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1985-0797045-5