Subelliptic resolvent estimates for non-self-adjoint semiclassical Schrödinger operators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolvent estimates for non-self-adjoint operators via semi-groups

We consider a non-self-adjoint h-pseudodifferential operator P in the semi-classical limit (h → 0). If p is the leading symbol, then under suitable assumptions about the behaviour of p at infinity, we know that the resolvent (z − P )−1 is uniformly bounded for z in any compact set not intersecting the closure of the range of p. Under a subellipticity condition, we show that the resolvent extend...

متن کامل

Semiclassical resolvent estimates for Schrödinger operators with Coulomb singularities

Consider the Schrödinger operator with semiclassical parameter h, in the limit where h goes to zero. When the involved long-range potential is smooth, it is well known that the boundary values of the operator’s resolvent at a positive energy λ are bounded by O(h−1) if and only if the associated Hamilton flow is non-trapping at energy λ. In the present paper, we extend this result to the case wh...

متن کامل

Semiclassical Resolvent Estimates for Trapping Perturbations

We study the semiclassical estimates of the resolvent R(+ ii); 2 J R + ; 2]0;1] of a self-adjoint operator L(h) in the space of bounded operators L(H 0;s ; H 0;?s); s > 1=2. In the general case of long-range trapping "black-box" perturbations we prove that the estimate of the cut-oo resolvent k(x)R(+i0)(x)k H!H C exp(Ch ?p); (x) 2 C 1 0 (R n); p 1 implies the estimate kR(+ ii)k s;?s C 1 exp(C 1...

متن کامل

Resolvent estimates for non-selfadjoint operators with double characteristics

We present recent progress in the understanding of the spectral and subelliptic properties of non-elliptic quadratic operators with application to the study of return to equilibrium for some systems of chains of oscillators. We then explain how these results allow to describe the spectral properties and to give sharp resolvent estimates for some classes of non-selfadjoint pseudodi erential oper...

متن کامل

Non-self-adjoint Differential Operators

We describe methods which have been used to analyze the spectrum of non-self-adjoint differential operators, emphasizing the differences from the self-adjoint theory. We find that even in cases in which the eigenfunctions can be determined explicitly, they often do not form a basis; this is closely related to a high degree of instability of the eigenvalues under small perturbations of the opera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Spectral Theory

سال: 2018

ISSN: 1664-039X

DOI: 10.4171/jst/244