Subdivisions of shellable complexes
نویسندگان
چکیده
In geometric, algebraic, and topological combinatorics, the unimodality of combinatorial generating polynomials is frequently studied. Unimodality follows when polynomial (real) stable, a property often deduced via theory interlacing polynomials. Many open questions on stability pertain to enumeration faces cell complexes. this paper, we relate shellability We first derive sufficient condition for h-polynomial subdivision shellable complex. To apply it, generalize notion reciprocal domains convex embeddings polytopes abstract use generalization define family stable shellings polytopal characterize cubical simplicial complexes, answer question Brenti Welker barycentric subdivisions well-known polytopes. also give positive solution problem Mohammadi edgewise end by relating line combinatorics hyperplane arrangements. pose related questions, answers which would resolve some long-standing problems while strengthening ties between
منابع مشابه
The Lefschetz Property for Barycentric Subdivisions of Shellable Complexes
We show that an ’almost strong Lefschetz’ property holds for the barycentric subdivision of a shellable complex. From this we conclude that for the barycentric subdivision of a CohenMacaulay complex, the h-vector is unimodal, peaks in its middle degree (one of them if the dimension of the complex is even), and that its g-vector is an M -sequence. In particular, the (combinatorial) g-conjecture ...
متن کاملShellable complexes from multicomplexes
Suppose a group G acts properly on a simplicial complex Γ . Let l be the number of G-invariant vertices, and p1,p2, . . . , pm be the sizes of the G-orbits having size greater than 1. Then Γ must be a subcomplex of Λ = Δl−1 ∗ ∂Δp1−1 ∗ · · · ∗ ∂Δpm−1. A result of Novik gives necessary conditions on the face numbers of Cohen–Macaulay subcomplexes of Λ. We show that these conditions are also suffi...
متن کاملPolygon Dissections Complexes Are Shellable
All dissections of a convex (mn + 2)-gons into (m + 2)-gons are facets of a simplicial complex. This complex is introduced by S. Fomin and A.V. Zelevinsky in [7]. We reprove the result of E. Tzanaki about shellability of such complex by finding a concrete shelling order. Also, we use this shelling order to find a combinatorial interpretation of h-vector and to describe the generating facets of ...
متن کاملSubdivisions of Toric Complexes
We introduce toric complexes as polyhedral complexes consisting of rational cones together with a set of integral generators for each cone, and we define their associated face rings. Abstract simplicial complexes and rational fans can be considered as toric complexes, and the face ring for toric complexes extends Stanley and Reisner’s face ring for abstract simplicial complexes [20] and Stanley...
متن کاملShellable Complexes and Topology of Diagonal Arrangements
We prove that if a simplicial complex ∆ is shellable, then the intersection lattice L∆ for the corresponding diagonal arrangement A∆ is homotopy equivalent to a wedge of spheres. Furthermore, we describe precisely the spheres in the wedge, based on the data of shelling. Also, we give some examples of diagonal arrangements A where the complement MA is K(π, 1), coming from rank 3 matroids.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 2022
ISSN: ['0097-3165', '1096-0899']
DOI: https://doi.org/10.1016/j.jcta.2021.105553