Subcritical $\mathcal {U}$-bootstrap percolation models have non-trivial phase transitions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subcritical U-bootstrap Percolation Models Have Non-trivial Phase Transitions

We prove that there exist natural generalizations of the classical bootstrap percolation model on Z that have non-trivial critical probabilities, and moreover we characterize all homogeneous, local, monotone models with this property. Van Enter [28] (in the case d = r = 2) and Schonmann [25] (for all d > r > 2) proved that r-neighbour bootstrap percolation models have trivial critical probabili...

متن کامل

Bootstrap percolation on homogeneous trees has 2 phase transitions

We study the threshold θ bootstrap percolation model on the homogeneous tree with degree b+ 1, 2 ≤ θ ≤ b, and initial density p. It is known that there exists a nontrivial critical value for p, which we call pf , such that a) for p > pf , the final bootstrapped configuration is fully occupied for almost every initial configuration, and b) if p < pf , then for almost every initial configuration,...

متن کامل

Behavioral Intervention and Non-Uniform Bootstrap Percolation

Bootstrap percolation is an often used model to study the spread of diseases, rumors, and information on sparse random graphs. The percolation process demonstrates a critical value such that the graph is either almost completely affected or almost completely unaffected based on the initial seed being larger or smaller than the critical value. In this paper, we consider behavioral interventions,...

متن کامل

Existence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...

متن کامل

Phase Transitions in a Nonequilibrium Percolation Model

We investigate the percolation properties of a two–state (occupied – empty) cellular automaton, where at each time step a cluster of occupied sites is removed and the same number of randomly chosen empty sites are occupied again. We find a finite region of critical behavior, formation of synchronized stripes, additional phase transitions, as well as violation of the usual finite– size scaling a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2016

ISSN: 0002-9947,1088-6850

DOI: 10.1090/tran/6586