Subclass Problem-Dependent Design for Error-Correcting Output Codes
نویسندگان
چکیده
منابع مشابه
Problem-dependent designs for Error Correcting Output Codes
Error correcting output codes (ECOC) represent a successful extension of binary classifiers to address the multiclass problem. In this paper, we propose a novel technique called ECOCONE (Optimal Node Embedding) to improve an initial ECOC configuration defining a strategy to create new dichotomies and improve optimally the performance. The process of searching for new dichotomies is guided by th...
متن کاملMutual Information Measures for Subclass Error-Correcting Output Codes Classification
Error-Correcting Output Codes (ECOCs) reveal a common way to model multi-class classification problems. According to this state of the art technique, a multi-class problem is decomposed into several binary ones. Additionally, on the ECOC framework we can apply the subclasses technique (sub-ECOC), where by splitting the initial classes of the problem we aim to the creation of larger but easier t...
متن کاملMinimal design of error-correcting output codes
0167-8655/$ see front matter 2011 Published by doi:10.1016/j.patrec.2011.09.023 ⇑ Corresponding author at: Centre de Visió per Com O, 08193 Bellaterra, Barcelona, Spain. E-mail addresses: [email protected] (M.Á. B (S. Escalera), [email protected] (X. Baró), petia@maia maia.uab.es (J. Vitriá), [email protected] (O. Pujol). The classification of large number of object categories is a challenging t...
متن کاملOnline error correcting output codes
This article proposes a general extension of the error correcting output codes framework to the online learning scenario. As a result, the final classifier handles the addition of new classes independently of the base classifier used. In particular, this extension supports the use of both online example incremental and batch classifiers as base learners. The extension of the traditional problem...
متن کاملSensitive Error Correcting Output Codes
We present a reduction from cost sensitive classi cation to binary classi cation based on (a modi cation of) error correcting output codes. The reduction satis es the property that regret for binary classi cation implies l2-regret of at most 2 for cost-estimation. This has several implications: 1) Any regret-minimizing online algorithm for 0/1 loss is (via the reduction) a regret-minimizing onl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2008
ISSN: 0162-8828
DOI: 10.1109/tpami.2008.38