Structured, compactly supported Banach frame decompositions of decomposition spaces

نویسندگان

چکیده

This paper presents a framework for constructing structured, possibly compactly supported Banach frames and atomic decompositions decomposition spaces. Such space $\def\DecompSp#1#2#3#4{{\mathcal{D}({#1},L_{#4}^{#2},{#3})}}\Deco

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Craya decomposition using compactly supported biorthogonal wavelets

We present a new local Craya–Herring decomposition of three-dimensional vector fields using compactly supported biorthogonal wavelets. Therewith vector-valued function spaces are split into two orthogonal components, i.e., curl-free and divergencefree spaces. The latter is further decomposed into toroidal and poloidal parts to decorrelate horizontal from vertical contributions which are of part...

متن کامل

Compactly supported wavelet bases for Sobolev spaces

In this paper we investigate compactly supported wavelet bases for Sobolev spaces. Starting with a pair of compactly supported refinable functions φ and φ̃ in L2(R) satisfying a very mild condition, we provide a general principle for constructing a wavelet ψ such that the wavelets ψjk := 2j/2ψ(2j · − k) (j, k ∈ Z) form a Riesz basis for L2(R). If, in addition, φ lies in the Sobolev space H(R), t...

متن کامل

On an atomic decomposition in Banach spaces

An atomic decomposition is considered in Banach space.  A method for constructing an atomic decomposition of Banach  space, starting with atomic decomposition of  subspaces  is presented. Some relations between them are established. The proposed method is used in the  study  of the  frame  properties of systems of eigenfunctions and associated functions of discontinuous differential operators.

متن کامل

Moreau's decomposition in Banach spaces

Moreau’s decomposition is a powerful nonlinear hilbertian analysis tool that has been used in various areas of optimization and applied mathematics. In this paper, it is extended to reflexive Banach spaces and in the context of generalized proximity measures. This extension unifies and significantly improves upon existing results.

متن کامل

Affine Frame Decompositions and Shift-Invariant Spaces

In this paper, we show that the property of tight affine frame decomposition of functions in L can be extended in a stable way to functions in Sobolev spaces when the generators of the tight affine frames satisfy certain mild regularity and vanishing moment conditions. Applying the affine frame operators Qj on j-th levels to any function f in a Sobolev space reveals the detailed information Qjf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Dissertationes Mathematicae

سال: 2022

ISSN: ['1730-6310', '0012-3862']

DOI: https://doi.org/10.4064/dm804-5-2021