Structured, compactly supported Banach frame decompositions of decomposition spaces
نویسندگان
چکیده
This paper presents a framework for constructing structured, possibly compactly supported Banach frames and atomic decompositions decomposition spaces. Such space $\def\DecompSp#1#2#3#4{{\mathcal{D}({#1},L_{#4}^{#2},{#3})}}\Deco
منابع مشابه
Craya decomposition using compactly supported biorthogonal wavelets
We present a new local Craya–Herring decomposition of three-dimensional vector fields using compactly supported biorthogonal wavelets. Therewith vector-valued function spaces are split into two orthogonal components, i.e., curl-free and divergencefree spaces. The latter is further decomposed into toroidal and poloidal parts to decorrelate horizontal from vertical contributions which are of part...
متن کاملCompactly supported wavelet bases for Sobolev spaces
In this paper we investigate compactly supported wavelet bases for Sobolev spaces. Starting with a pair of compactly supported refinable functions φ and φ̃ in L2(R) satisfying a very mild condition, we provide a general principle for constructing a wavelet ψ such that the wavelets ψjk := 2j/2ψ(2j · − k) (j, k ∈ Z) form a Riesz basis for L2(R). If, in addition, φ lies in the Sobolev space H(R), t...
متن کاملOn an atomic decomposition in Banach spaces
An atomic decomposition is considered in Banach space. A method for constructing an atomic decomposition of Banach space, starting with atomic decomposition of subspaces is presented. Some relations between them are established. The proposed method is used in the study of the frame properties of systems of eigenfunctions and associated functions of discontinuous differential operators.
متن کاملMoreau's decomposition in Banach spaces
Moreau’s decomposition is a powerful nonlinear hilbertian analysis tool that has been used in various areas of optimization and applied mathematics. In this paper, it is extended to reflexive Banach spaces and in the context of generalized proximity measures. This extension unifies and significantly improves upon existing results.
متن کاملAffine Frame Decompositions and Shift-Invariant Spaces
In this paper, we show that the property of tight affine frame decomposition of functions in L can be extended in a stable way to functions in Sobolev spaces when the generators of the tight affine frames satisfy certain mild regularity and vanishing moment conditions. Applying the affine frame operators Qj on j-th levels to any function f in a Sobolev space reveals the detailed information Qjf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Dissertationes Mathematicae
سال: 2022
ISSN: ['1730-6310', '0012-3862']
DOI: https://doi.org/10.4064/dm804-5-2021