Structure ranks of matrices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ranks of Random Matrices and Graphs

OF THE DISSERTATION Ranks of Random Matrices and Graphs by Kevin Costello Dissertation Director: Van Vu Let Qn be a random symmetric matrix whose entries on and above the main diagonal are independent random variables (e.g. the adjacency matrix of an Erdős-Rényi random graph). In this thesis we study the behavior of the rank of the matrix in terms of the probability distribution of the entries....

متن کامل

Ranks and signatures of adjacency matrices

Two simple operations on graphs (deleting isolated vertices, and identifying vertices with the same neighbour sets) do not change the rank and signature of the adjacency matrix. Moreover, for any given rank, there are only finitely many reduced graphs (those in which distinct vertices have distinct neighbour sets) of any given rank. It follows that any graph parameter which is unchanged by the ...

متن کامل

Ranks of matrices with few distinct entries

An L-matrix is a matrix whose off-diagonal entries belong to a set L, and whose diagonal is zero. Let N(r, L) be the maximum size of a square L-matrix of rank at most r. Many applications of linear algebra in extremal combinatorics involve a bound on N(r, L). We review some of these applications, and prove several new results on N(r, L). In particular, we classify the sets L for which N(r, L) i...

متن کامل

Modular Ranks of Geometric Inclusion Matrices

We survey recent results on p-ranks of certain inclusion matrices arising from a finite projective space or a finite symplectic space. 2000 Mathematics Subject Classification: 05E20, 20G05, 20C33.

متن کامل

Ranks of Quotients, Remainders and $p$-Adic Digits of Matrices

For a prime p and a matrix A ∈ Zn×n, write A as A = p(A quo p)+ (A rem p) where the remainder and quotient operations are applied element-wise. Write the p-adic expansion of A as A = A[0] + pA[1] + p2A[2] + · · · where each A[i] ∈ Zn×n has entries between [0, p − 1]. Upper bounds are proven for the Z-ranks of A rem p, and A quo p. Also, upper bounds are proven for the Z/pZ-rank of A[i] for all ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1993

ISSN: 0024-3795

DOI: 10.1016/0024-3795(93)90324-h