Structure of the largest idempotent-product free sequences in semigroups
نویسندگان
چکیده
منابع مشابه
On the Structure of Certain Idempotent Semigroups
Some general theorems concerning residual finiteness of algebras are given that are applied to show that every idempotent semigroup satisfying xyzx = xzyx identically is a subcartesian product of certain simple semigroups of order two and three. Introduction. In this paper we present a technique involving a special type of infinitely long sentence which seems of fairly general applicability in ...
متن کاملFree Idempotent Generated Semigroups over Bands
We study the general structure of the free idempotent generated semigroup IG(B) over an arbitrary band B. We show that IG(B) is always a weakly abundant semigroup with the congruence condition, but not necessarily abundant. We then prove that if B is a normal band or a quasi-zero band for which IG(B) satisfies Condition (P ), then IG(B) is an abundant semigroup. In consequence, if Y is a semila...
متن کاملthe role of thematic structure in comprehending spoken language
in fact this study is concerned with the relationship between the variation in thematice structure and the comprehension of spoken language. so the study focused on the following questions: 1. is there any relationship between thematic structure and the comprehension of spoken language? 2. which of the themes would have greated thematic force and be easier for the subjects to comprehend? accord...
15 صفحه اولthe effects of changing roughness on the flow structure in the bends
flow in natural river bends is a complex and turbulent phenomenon which affects the scour and sedimentations and causes an irregular bed topography on the bed. for the reason, the flow hydralics and the parameters which affect the flow to be studied and understand. in this study the effect of bed and wall roughness using the software fluent discussed in a sharp 90-degree flume bend with 40.3cm ...
On Maximal Subgroups of Free Idempotent Generated Semigroups
We prove the following results: (1) Every group is a maximal subgroup of some free idempotent generated semigroup. (2) Every finitely presented group is a maximal subgroup of some free idempotent generated semigroup arising from a finite semigroup. (3) Every group is a maximal subgroup of some free regular idempotent generated semigroup. (4) Every finite group is a maximal subgroup of some free...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2019
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2018.05.020