Structure Functions of Pseudo Null Curves in Minkowski 3-Space
نویسندگان
چکیده
منابع مشابه
Biharmonic Curves in Minkowski 3-space
We give a differential geometric interpretation for the classification of biharmonic curves in semi-Euclidean 3-space due to Chen and Ishikawa (1991).
متن کاملNo Null-Helix Mannheim Curves in the Minkowski Space E13
In the study of the fundamental theory and the characterizations of space curves, the related curves for which there exist corresponding relations between the curves are very interesting and important problems. The most fascinating examples of such curve are associated curves, the curves for which at the corresponding points of them one of the Frenet vectors of a curve coincides with the one of...
متن کاملk−type partially null and pseudo null slant helices in Minkowski 4-space
We introduce the notion of a k-type slant helix in Minkowski space E1. For partially null and pseudo null curves in E1, we express some characterizations in terms of their curvature and torsion functions. AMS subject classifications: 53C40, 53C50
متن کاملGeneralized Null 2-Type Surfaces in Minkowski 3-Space
For the mean curvature vector field H and the Laplace operator ∆ of a submanifold in the Minkowski space, a submanifold satisfying the condition ∆H = f H + gC is known as a generalized null 2-type, where f and g are smooth functions, and C is a constant vector. The notion of generalized null 2-type submanifolds is a generalization of null 2-type submanifolds defined by B.-Y. Chen. In this paper...
متن کاملCaustics of de Sitter spacelike curves in Minkowski 3-space
In this paper, we consider evolutes of spacelike curves in de Sitter 2-space. Applying the theory of singularity theory, we find that these evolutes can be seen as one dimensional caustics which are locally diffeomorphic to lines or ordinary cusps. We establish the relationships between singularities of caustics and geometric invariants of curves under the action of the Lorentz group. c ©2016 A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2020
ISSN: 2227-7390
DOI: 10.3390/math8010075