Structure and function of the feed-forward loop network motif
نویسندگان
چکیده
منابع مشابه
Structure and function of the feed-forward loop network motif.
Engineered systems are often built of recurring circuit modules that carry out key functions. Transcription networks that regulate the responses of living cells were recently found to obey similar principles: they contain several biochemical wiring patterns, termed network motifs, which recur throughout the network. One of these motifs is the feed-forward loop (FFL). The FFL, a three-gene patte...
متن کاملthe underlying structure of language proficiency and the proficiency level
هدف از انجام این تخقیق بررسی رابطه احتمالی بین سطح مهارت زبان خارجی (foreign language proficiency) و ساختار مهارت زبان خارجی بود. تعداد 314 زبان آموز مونث و مذکر که عمدتا دانشجویان رشته های زبان انگلیسی در سطوح کارشناسی و کارشناسی ارشد بودند در این تحقیق شرکت کردند. از لحاظ سطح مهارت زبان خارجی شرکت کنندگان بسیار با هم متفاوت بودند، (75 نفر سطح پیشرفته، 113 نفر سطح متوسط، 126 سطح مقدماتی). کلا ...
15 صفحه اولThe Generalized Feed-forward Loop Motif: Definition, Detection and Statistical Significance
Network motifs play an important role in the qualitative analysis and quantitative characterization of networks. The feed-forward loop is a semantically important and statistically highly significant motif. In this paper, we extend the definition of the feed-forward loop to subgraphs of arbitrary size. To avoid the complexity of path enumeration, we define generalized feed-forward loops as pair...
متن کاملFeed forward neural network entities
Feed Forward Neural Networks (FFNNs) are computational techniques inspired by the physiology of the brain and used in the approximation of general mappings from one nite dimensional space to another. They present a practical application of the theoretical resolution of Hilbert's 13 th problem by Kolmogorov and Lorenz, and have been used with success in a variety of applications. However, as the...
متن کاملSignal Prediction by Layered Feed - Forward Neural Network (RESEARCH NOTE).
In this paper a nonparametric neural network (NN) technique for prediction of future values of a signal based on its past history is presented. This approach bypasses modeling, identification, and parameter estimation phases that are required by conventional parametric techniques. A multi-layer feed forward NN is employed. It develops an internal model of the signal through a training operation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2003
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.2133841100