Structural Determinants of Gating in Inward-Rectifier K+ Channels

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carboxy-terminal Determinants of Conductance in Inward-rectifier K Channels

Previous studies suggested that the cytoplasmic COOH-terminal portions of inward rectifier K channels could contribute significant resistance barriers to ion flow. To explore this question further, we exchanged portions of the COOH termini of ROMK2 (Kir1.1b) and IRK1 (Kir2.1) and measured the resulting single-channel conductances. Replacing the entire COOH terminus of ROMK2 with that of IRK1 de...

متن کامل

Structural Determinants of Pip2 Regulation of Inward Rectifier KATP Channels

Phosphatidylinositol 4,5-bisphosphate (PIP(2)) activates K(ATP) and other inward rectifier (Kir) channels. To determine residues important for PIP(2) regulation, we have systematically mutated each positive charge in the COOH terminus of Kir6.2 to alanine. The effects of these mutations on channel function were examined using (86)Rb efflux assays on intact cells and inside-out patch-clamp metho...

متن کامل

Silent inward rectifier K+ channels in hypercholesterolemia.

Hypercholesterolemia is an independent risk factor for development of cardiovascular disease1 and has been demonstrated to impair endothelium-dependent and independent vasodilatation.2 However, the mechanisms responsible for changes in vascular reactivity and impaired blood flow regulation induced by hypercholesterolemia remain unclear. Previous studies in cultured endothelial cells have shown ...

متن کامل

Gating Dependence of Inner Pore Access in Inward Rectifier K+ Channels

Cation channel gating may occur either at or below the inner vestibule entrance or at the selectivity filter. To differentiate these possibilities in inward rectifier (Kir) channels, we examined cysteine accessibility in the ATP-gated Kir6.2 channel. MTSEA and MTSET both block channels and modify M2 cysteines with identical voltage dependence. If entry is restricted to open channels, modificati...

متن کامل

Gating of inward rectifier K+ channels by proton-mediated interactions of N- and C-terminal domains.

Ion channels play an important role in cellular functions, and specific cellular activity can be produced by gating them. One important gating mechanism is produced by intra- or extracellular ligands. Although the ligand-mediated channel gating is an important cellular process, the relationship between ligand binding and channel gating is not well understood. It is possible that ligands are inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biophysical Journal

سال: 1999

ISSN: 0006-3495

DOI: 10.1016/s0006-3495(99)77357-1