Structural classification of antibody CDR-H3.
نویسندگان
چکیده
منابع مشابه
The origin of CDR H3 structural diversity.
Antibody complementarity determining region (CDR) H3 loops are critical for adaptive immunological functions. Although the other five CDR loops adopt predictable canonical structures, H3 conformations have proven unclassifiable, other than an unusual C-terminal "kink" present in most antibodies. To determine why the majority of H3 loops are kinked and to learn whether non-antibody proteins have...
متن کاملRevisiting antibody modeling assessment for CDR-H3 loop
The antigen-binding site of antibodies, also known as complementarity-determining region (CDR), has hypervariable sequence properties. In particular, the third CDR loop of the heavy chain, CDR-H3, has such variability in its sequence, length, and conformation that ordinary modeling techniques cannot build a high-quality structure. At Stage 2 of the Second Antibody Modeling Assessment (AMA-II) h...
متن کاملPyIgClassify: a database of antibody CDR structural classifications
Classification of the structures of the complementarity determining regions (CDRs) of antibodies is critically important for antibody structure prediction and computational design. We have previously performed a clustering of antibody CDR conformations and defined a systematic nomenclature consisting of the CDR, length and an integer starting from the largest to the smallest cluster in the data...
متن کاملRepertoire Analysis of Antibody CDR-H3 Loops Suggests Affinity Maturation Does Not Typically Result in Rigidification
Antibodies can rapidly evolve in specific response to antigens. Affinity maturation drives this evolution through cycles of mutation and selection leading to enhanced antibody specificity and affinity. Elucidating the biophysical mechanisms that underlie affinity maturation is fundamental to understanding B-cell immunity. An emergent hypothesis is that affinity maturation reduces the conformati...
متن کاملLimiting CDR-H3 diversity abrogates the antibody response to the bacterial polysaccharide α 1→3 dextran.
Anti-polysaccharide Ab responses in mice are often oligoclonal, and the mechanisms involved in Ag-specific clone production and selection remain poorly understood. We evaluated the relative contribution of D(H) germline content versus N nucleotide addition in a classic oligoclonal, T-independent Ab response (α 1→3 dextran [DEX]) by challenging adult TdT-sufficient (TdT(+/+)) and TdT-deficient (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Seibutsu Butsuri
سال: 1998
ISSN: 0582-4052,1347-4219
DOI: 10.2142/biophys.38.21