Strong convergence of solutions to nonautonomous Kolmogorov equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Convergence of Solutions to Nonautonomous Kolmogorov Equations

We study a class of nonautonomous, linear, parabolic equations with unbounded coefficients on Rd which admit an evolution system of measures. It is shown that the solutions of these equations converge to constant functions as t → +∞. We further establish the uniqueness of the tight evolution system of measures and treat the case of converging coefficients.

متن کامل

Nonautonomous Kolmogorov Parabolic Equations with Unbounded Coefficients

We study a class of elliptic operators A with unbounded coefficients defined in I × R for some unbounded interval I ⊂ R. We prove that, for any s ∈ I, the Cauchy problem u(s, ·) = f ∈ Cb(R ) for the parabolic equation Dtu = Au admits a unique bounded classical solution u. This allows to associate an evolution family {G(t, s)} with A, in a natural way. We study the main properties of this evolut...

متن کامل

Strong Convergence Theorems for Solutions of Equations of Hammerstein Type

Let H be a real Hilbert space. A mapping A : D(A) ⊆ H → H is said to be monotone if ⟨Ax − Ay, x − y⟩ ≥ 0 for every x, y ∈ D(A). A is called maximal monotone if it is monotone and the R(I + rA) = H, the range of (I + rA), for each r > 0, where I is the identity mapping on H. A is said to satisfy the range condition if cl(D(A)) ⊆ R(I + rA) for each r > 0. For monotone mappings, there are many rel...

متن کامل

Unstable Solutions of Nonautonomous Linear Differential Equations

The fact that the eigenvalues of the family of matrices A(t) do not determine the stability of non-autonomous differential equations x′ = A(t)x is well known. This point is often illustrated using examples in which the matrices A(t) have constant eigenvalues with negative real part, but the solutions of the corresponding differential equation grow in time. Here we provide an intuitive, geometri...

متن کامل

Heteroclinic Solutions for Nonautonomous EFK Equations

and Applied Analysis 3 Lemma 3. Let q ∈ E. Then for any V > 0, r < s ∈ R such that q(t) ∉ B ε (V) and |q(t)| ⩽ V for any t ∈ [r, s], I (q) ⩾ √2σ ε,V 󵄨󵄨󵄨󵄨q (r) − q (s) 󵄨󵄨󵄨󵄨 . (16) In particular, if σ ε > 0, then for any r < s ∈ R such that q(t) ∉ B ε (V) for any t ∈ [r, s], I (q) ⩾ √2σ ε 󵄨󵄨󵄨󵄨q (r) − q (s) 󵄨󵄨󵄨󵄨 . (17) Proof. Denote l = |q(r) − q(s)| and τ = |r − s|. Then l = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ∫ s r q 󸀠 (t)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2016

ISSN: 0002-9939,1088-6826

DOI: 10.1090/proc/13031