Strong Convergence of Mann’s Iteration Process in Banach Spaces
نویسندگان
چکیده
منابع مشابه
Strong convergence of modified noor iteration in CAT(0) spaces
We prove a strong convergence theorem for the modified Noor iterations in the framework of CAT(0) spaces. Our results extend and improve the corresponding results of X. Qin, Y. Su and M. Shang, T. H. Kim and H. K. Xu and S. Saejung and some others.
متن کاملStrong Convergence of Non-Implicit Iteration Process with Errors in Banach Spaces
and Applied Analysis 3 Lemma 1.1 see 21 . let X be a uniformly convex Banach space. Let b and c be two constants with 0 < b < c < 1. Suppose that {tn} is a sequence in b, c . Let {xn} and {yn} be two sequences in X such that lim sup n→∞ ‖xn‖ ≤ d, lim sup n→∞ ∥ yn ∥ ∥ ≤ d, lim n→∞ ∥ tnxn 1 − tn yn ∥ ∥ d 1.8 hold for some d ≥ 0, then limn→∞‖xn − yn‖ 0. Lemma 1.2 see 26 . Let {an}, {bn}, and {cn} ...
متن کاملStrong Convergence of an Implicit Iteration Process for Two Asymptotically Nonexpansive Mappings in Banach Spaces
The purpose of this paper is to introduce an implicit iteration process for approximating common fixed points of two asymptotically nonexpansive mappings and to prove strong convergence theorems in uniformly convex Banach spaces.
متن کاملNew iteration process for approximating fixed points in Banach spaces
The object of this paper is to present a new iteration process. We will show that our process is faster than the known recent iterative schemes. We discuss stability results of our iteration and prove some results in the context of uniformly convex Banach space for Suzuki generalized nonexpansive mappings. We also present a numerical example for proving the rate of convergence of our res...
متن کاملstrong convergence of modified noor iteration in cat(0) spaces
we prove a strong convergence theorem for the modified noor iterations in the framework of cat(0) spaces. our results extend and improve the corresponding results of x. qin, y. su and m. shang, t. h. kim and h. k. xu and s. saejung and some others.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2020
ISSN: 2227-7390
DOI: 10.3390/math8060954