Strong completeness and semi-flows for stochastic differential equations with monotone drift

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

strong approximation for itô stochastic differential equations

in this paper, a class of semi-implicit two-stage stochastic runge-kutta methods (srks) of strong global order one, with minimum principal error constants are given. these methods are applied to solve itô stochastic differential equations (sdes) with a wiener process. the efficiency of this method with respect to explicit two-stage itô runge-kutta methods (irks), it method, milstien method, sem...

متن کامل

Lack of strong completeness for stochastic flows

It is well-known that a stochastic differential equation (SDE) on a Euclidean space driven by a Brownian motion with Lipschitz coefficients generates a stochastic flow of homeomorphisms. When the coefficients are only locally Lipschitz, then a maximal continuous flow still exists but explosion in finite time may occur. If – in addition – the coefficients grow at most linearly, then this flow ha...

متن کامل

Set Differential Equations and Monotone Flows

Monotone iterative technique is extended to set differential equations. The nonlinear function involved is allowed to be difference of two monotone functions, which takes care of several results known and new.

متن کامل

Backward stochastic differential equations with Young drift

We show the well-posedness of backward stochastic differential equations containing an additional drift driven by a path of finite q-variation with q ∈ [1, 2). In contrast to previous work, we apply a direct fixpoint argument and do not rely on any type of flow decomposition. The resulting object is an effective tool to study semilinear rough partial differential equations via a Feynman–Kac typ...

متن کامل

Stochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered‎. ‎The coefficients are assumed to have linear growth‎. ‎We do not impose coercivity conditions on coefficients‎. ‎A novel method of proof for establishing existence and uniqueness of the mild solution is proposed‎. ‎Examples on stochastic partial differentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2017

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2016.09.049