Strong chromatic index of subcubic planar multigraphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating the chromatic index of multigraphs

It is well known that if G is a multigraph then χ(G) ≥ χ(G) := max{∆(G), Γ(G)}, where χ(G) is the chromatic index of G, χ(G) is the fractional chromatic index of G, ∆(G) is the maximum degree of G, and Γ(G) = max{2|E(G[U ])|/(|U | − 1) : U ⊆ V (G), |U | ≥ 3, |U | is odd}. The conjecture that χ(G) ≤ max{∆(G) + 1, dΓ(G)e} was made independently by Goldberg (1973), Anderson (1977), and Seymour (19...

متن کامل

Chromatic-index critical multigraphs of order 20

A multigraph M with maximum degree (M) is called critical, if the chromatic index 0 (M) > (M) and 0 (M ? e) = 0 (M) ? 1 for each edge e of M. The weak critical graph conjecture 1, 7] claims that there exists a constant c > 0 such that every critical multigraph M with at most c (M) vertices has odd order. We disprove this conjecture by constructing critical multigraphs of order 20 with maximum d...

متن کامل

Strong chromatic index of planar graphs with large girth

Let ∆ ≥ 4 be an integer. In this note, we prove that every planar graph with maximum degree ∆ and girth at least 10∆+46 is strong (2∆−1)-edgecolorable, that is best possible (in terms of number of colors) as soon as G contains two adjacent vertices of degree ∆. This improves [6] when ∆ ≥ 6.

متن کامل

The chromatic number of the square of subcubic planar graphs

Wegner conjectured in 1977 that the square of every planar graph with maximum degree at most 3 is 7-colorable. We prove this conjecture using the discharging method and computational techniques to verify reducible configurations. Mathematics Subject Classification: Primary 05C15; Secondary 05C10, 68R10.

متن کامل

A Combined Logarithmic Bound on the Chromatic Index of Multigraphs

For any multigraph G of order n, let Φ(G) denote the integer roundup of its fractional chromatic index. We show that the chomatic index χ (G) satisfies χ (G) ≤ Φ(G) + log(min{ n + 1 3 , Φ(G)}). The method used is deterministic (though it extends a famous probabilistic result by Kahn), and different from the re-coloring techniques that are the basis for many of the other known upper bounds on χ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2016

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2015.07.002