Strictly singular non-compact operators between $L_p$ spaces

نویسندگان

چکیده

We study the structure of strictly singular non-compact operators between $L\_p$ spaces. Answering a question raised in earlier work on interpolation properties operators, it is shown that there exist $T$, for which set points $(1/p,1/q)\in(0,1)\times (0,1)$ such $T\colon L\_p\rightarrow L\_q$ but not compact contains line segment triangle ${(1/p,1/q):1\<p\<q<\infty}$ any positive slope. This will be achieved by means Riesz potential metric measure spaces with different Hausdorff dimension. The relation compactness and strict singularity regular (i.e., difference positive) defined subspaces also explored.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strictly Singular Non-compact Operators on Hereditarily Indecomposable Banach Spaces

An example is given of a strictly singular non-compact operator on a Hereditarily Indecomposable, reflexive, asymptotic `1 Banach space. The construction of this operator relies on the existence of transfinite c0-spreading models in the dual of the space.

متن کامل

Strictly Singular, Non-compact Operators Exist on the Space of Gowers and Maurey

We construct a strictly singular non-compact operator on Gowers’ and Maurey’s space GM .

متن کامل

A Class of Banach Spaces with Few Non Strictly Singular Operators

The original motivation for this paper is based on the natural question left open by the Gowers-Maurey solution of the unconditional basic sequence problem for Banach spaces ([12]). Recall that Gowers and Maurey have constructed a Banach space X with a Schauder basis (en)n but with no unconditional basic sequence. Thus, while every infinite dimensional Banach space contains a sequence (xn)n whi...

متن کامل

Weighted composition operators between growth spaces on circular and strictly convex domain

Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista Matematica Iberoamericana

سال: 2022

ISSN: ['2235-0616', '0213-2230']

DOI: https://doi.org/10.4171/rmi/1360