Strictly Convex Banach Algebras
نویسندگان
چکیده
We discuss two facets of the interaction between geometry and algebra in Banach algebras. In class unital algebras, there is essentially one known example which also strictly convex as a space. recall this example, finite-dimensional, consider open question generalising it to infinite dimensions. C*-algebras, we exhibit striking tighter relationship that exists there.
منابع مشابه
Dynamics of non-expansive maps on strictly convex Banach spaces
This paper concerns the dynamics of non-expansive maps on strictly convex finite dimensional normed spaces. By using results of Edelstein and Lyubich, we show that if X = (R, ‖ · ‖) is strictly convex and X has no 1-complemented Euclidean plane, then every bounded orbit of a non-expansive map f : X → X , converges to a periodic orbit. By putting extra assumptions on the derivatives of the norm,...
متن کاملComposition operators between growth spaces on circular and strictly convex domains in complex Banach spaces
Let $\Omega_X$ be a bounded, circular and strictly convex domain in a complex Banach space $X$, and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$. The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$ such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$ for some constant $C>0$...
متن کاملamenability of banach algebras
chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...
15 صفحه اولStrictly Convex Corners Scatter
We prove the absence of non-scattering energies for potentials in the plane having a corner of angle smaller than π. This extends the earlier result of Bl̊asten, Päivärinta and Sylvester who considered rectangular corners. In three dimensions, we prove a similar result for any potential with a circular conic corner whose opening angle is outside a countable subset of (0, π).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2021
ISSN: ['2075-1680']
DOI: https://doi.org/10.3390/axioms10030221