Strict ∞-groupoids are Grothendieck ∞-groupoids

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homotopy types of strict 3-groupoids

It has been difficult to see precisely the role played by strict n-categories in the nascent theory of n-categories, particularly as related to n-truncated homotopy types of spaces. We propose to show in a fairly general setting that one cannot obtain all 3-types by any reasonable realization functor 1 from strict 3-groupoids (i.e. groupoids in the sense of [20]). More precisely we show that on...

متن کامل

n-groupoids and stacky groupoids

We discuss two generalizations of Lie groupoids. One consists of Lie n-groupoids defined as simplicial manifolds with trivial πk≥n+1. The other consists of stacky Lie groupoids G ⇒ M with G a differentiable stack. We build a 1–1 correspondence between Lie 2-groupoids and stacky Lie groupoids up to a certain Morita equivalence. We prove this in a general set-up so that the statement is valid in ...

متن کامل

Types are weak ω - groupoids

We define a notion of weak ω-category internal to a model of Martin-Löf’s type theory, and prove that each type bears a canonical weak ω-category structure obtained from the tower of iterated identity types over that type. We show that the ω-categories arising in this way are in fact ω-groupoids.

متن کامل

The Brown-Golasinski model structure on strict -groupoids revisited

We prove that the folk model structure on strict ∞-categories transfers to the category of strict ∞-groupoids (and more generally to the category of strict (∞, n)categories), and that the resulting model structure on strict ∞-groupoids coincides with the one defined by Brown and Golasiński via crossed complexes.

متن کامل

Slim Groupoids

Slim groupoids are groupoids satisfying x(yz) ≈ xz. We find all simple slim groupoids and all minimal varieties of slim groupoids. Every slim groupoid can be embedded into a subdirectly irreducible slim groupoid. The variety of slim groupoids has the finite embeddability property, so that the word problem is solvable. We introduce the notion of a strongly nonfinitely based slim groupoid (such g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2013

ISSN: 0022-4049

DOI: 10.1016/j.jpaa.2013.03.008