Strain-hardening properties of the high-entropy alloy MoNbTaTiVZr processed by high-pressure torsion

نویسندگان

چکیده

Abstract An equiatomic MoNbTaTiVZr refractory high-entropy alloy (HEA) produced by arc melting was processed high-pressure torsion (HPT) at room temperature. Thermodynamic calculations and experimental results indicated a dual-phase microstructure composed of about 85% BCC Zr-depleted 15% Zr-rich phase in the as-cast condition. HPT causes grain refinement an increase dislocation density without formation new phases. After four revolutions, hardened to $$\sim $$ ? 540 HV, while exhibited softening with decrease hardness 480 HV. The occurrence vortex-like analysis elemental concentrations shear-induced mechanical homogenization, which supposed be cause observed softening.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hardening and thermal stability of a nanocrystalline CoCrFeNiMnTi0.1 high-entropy alloy processed by high- pressure torsion

A CoCrFeNiMnTi0.1 high-entropy alloy (HEA) was subjected to high-pressure torsion (HPT) processing under 6.0 GPa pressure up to 10 turns. XRD results reveal that the initial and HPT-processed microstructures consist of a single fcc phase and there is no evidence for creating a new phase and the occurrence of a phase transformation during HPT processing. It is shown that there is a gradual evolu...

متن کامل

Dual mechanisms of grain refinement in a FeCoCrNi high-entropy alloy processed by high-pressure torsion

An equiatomic FeCoCrNi high-entropy alloy with a face-centered cubic structure was fabricated by a powder metallurgy route, and then processed by high-pressure torsion. Detailed microscopy investigations revealed that grain refinement from coarse grains to nanocrystalline grains occurred mainly via concurrent nanoband (NB) subdivision and deformation twinning. NB-NB, twin-NB and twin-twin inter...

متن کامل

Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing

High-pressure torsion (HPT) and thermal annealing were applied to a face-centered cubic as-cast Al0.3CoCrFeNi high entropy alloy. Processing by HPT produced a nanostructure with a higher incremental hardness than in most HPT single-phase materials and subsequent annealing at appropriate temperatures gave an ordered body-centered cubic secondary phase with an additional increase in hardness. The...

متن کامل

Superplasticity of a nano-grained Mg–Gd–Y–Zr alloy processed by high-pressure torsion

While most of the reports on Mg-Gd-Y-Zr alloys report superplasticity after extrusion or friction stir processing, it is important to investigate superplasticity in these alloys after other severe plastic deformation processes having greater grain refinement capability. Accordingly, superplasticity was studied in an Mg–9Gd–4Y–0.4Zr (GW94) alloy after different high-pressure torsion (HPT) condit...

متن کامل

Fatigue Behavior of an Ultrafine-Grained Al-Mg-Si Alloy Processed by High-Pressure Torsion

The paper presents the evaluation of the mechanical and fatigue properties of an ultrafine-grained (UFG) Al 6061 alloy processed by high-pressure torsion (HPT) at room temperature (RT). A comparison is made between the UFG state and the coarse-grained (CG) one subjected to the conventional aging treatment Т6. It is shown that HPT processing leads to the formation of the UFG microstructure with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Continuum Mechanics and Thermodynamics

سال: 2021

ISSN: ['0935-1175', '1432-0959']

DOI: https://doi.org/10.1007/s00161-021-01065-5