Strain engineering in III-V photonic components through structuration of SiN<sub>x</sub> films
نویسندگان
چکیده
We describe work to quantify the effects of structured dielectric thin films, such as SiNx, at surface III-V semiconductors, in terms strain engineering with applications photonic components waveguides and lasers. show that semiconductor can be engineered by controlling stress film tuning its deposition process. In first part this study, we how control amount built-in mechanical stress, case over a large range, from highly tensile (300 MPa) compressive (−800 MPa), using two different kinds plasma-enhanced chemical vapor reactors: standard capacitively coupled reactor radiofrequency excitation an electron cyclotron resonance microwave excitation. focused on characterizing understanding these films' optical bonding properties through spectroscopic ellipsometry Fourier transform infrared spectroscopy. have also studied their experimentally wafer curvature measurement technique, microstructure fabrication, nanoindentation measurements. second part, accurate measurements distribution induced within GaAs wafers when films are shape elongated stripes variable width, lithography plasma etching. For this, map anisotropic deformation, measuring degree polarization spectrally integrated photoluminescence (PL) generated red laser. PL bulk cubic semiconductors InP is unpolarized, whereas produces some polarization. These maps were measured either or cleaved cross sections. They provide detailed complete image crystal deformation vicinity stressor film. Finally, performed finite element simulations trying reproduce experimental maps. This investigation covering steps, including SiNx mapping field beneath numerical simulation effects, allows us propose set recipes employed for components. Our scheme helpful design components, e.g., predict local changes refractive index due photoelastic effect.
منابع مشابه
architecture and engineering of nanoscale sculptured thin films and determination of their properties
چکیده ندارد.
15 صفحه اولStrain-induced Self-rolling III-V Tubular nanostructures: Formation Process and Photonic Applications
We demonstrate the rolling process of strained III-V compound semiconductor films upon epitaxial liftoff from the substrate. The formed tubular structures with diameters in the micron range, embedded with quantum confined GaAs light emitters in the ultra-thin tube walls (< 100 nm) show dramatic enhancement in intensity and reduction of bandgap as a function of tube curvature. Emission character...
متن کاملDoped Sol-Gel Films for Silica-on-Silicon Photonic Components
Further expansion of optical communication systems depends strongly on the development of cheap component technologies for functions such as switching, demultiplexing and amplification. Silica-on-silicon is increasingly recognised as the best approach to low cost integrated optics for such applications, but so far the functionality is limited. The purpose of NODES, a basic research collaboratio...
متن کاملthe analysis of the role of the speech acts theory in translating and dubbing hollywood films
از محوری ترین اثراتی که یک فیلم سینمایی ایجاد می کند دیالوگ هایی است که هنرپیش گان فیلم میگویند. به زعم یک فیلم ساز, یک شیوه متأثر نمودن مخاطب از اثر منظوره نیروی گفتارهای گوینده, مثل نیروی عاطفی, ترس آور, غم انگیز, هیجان انگیز و غیره, است. این مطالعه به بررسی این مسأله مبادرت کرده است که آیا نیروی فراگفتاری هنرپیش گان به مثابه ی اعمال گفتاری در پنج فیلم هالیوودی در نسخه های دوبله شده باز تولید...
15 صفحه اولIII-V/Si hybrid photonic devices by direct fusion bonding
Monolithic integration of III-V compound semiconductors on silicon is highly sought after for high-speed, low-power-consumption silicon photonics and low-cost, light-weight photovoltaics. Here we present a GaAs/Si direct fusion bonding technique to provide highly conductive and transparent heterojunctions by heterointerfacial band engineering in relation to doping concentrations. Metal- and oxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of vacuum science and technology
سال: 2022
ISSN: ['2166-2746', '2166-2754']
DOI: https://doi.org/10.1116/6.0001352