Stochastic traveling wave solution to stochastic generalized KPP equation
نویسندگان
چکیده
منابع مشابه
Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation
In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...
متن کاملStochastic solution to a time-fractional attenuated wave equation.
The power law wave equation uses two different fractional derivative terms to model wave propagation with power law attenuation. This equation averages complex nonlinear dynamics into a convenient, tractable form with an explicit analytical solution. This paper develops a random walk model to explain the appearance and meaning of the fractional derivative terms in that equation, and discusses a...
متن کاملTraveling solitary wave solutions to the generalized Boussinesq equation
In this paper, we are concerned with the generalized Boussinesq equation including the singularly sixth-order Boussinesq equation, which describes the bi-directional propagation of small amplitude and long capillary-gravity waves on the surface of shallow water for bond number less than but very close to 1/3. By the means of two proper ansatzs, we obtain explicit traveling solitary wave solutio...
متن کاملnumerical solution of heun equation via linear stochastic differential equation
in this paper, we intend to solve special kind of ordinary differential equations which is called heun equations, by converting to a corresponding stochastic differential equation(s.d.e.). so, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this s.d.e. is solved by numerically methods. mo...
متن کاملOn the Bifurcation of Traveling Wave Solution of Generalized Camassa-Holm Equation
The generalized Camassa-Holm equation ut + 2kux − uxxt + auux = 2uxuxx + uuxxx + γuxxx is considered in this paper. Under traveling wave variable substitution, the equation is related to a planar singular system. By making a transformation this singular system becomes a regular system. Through discussing the dynamical behavior of the regular system, the explicit periodic blow-up solutions and s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Differential Equations and Applications NoDEA
سال: 2014
ISSN: 1021-9722,1420-9004
DOI: 10.1007/s00030-014-0279-9