Stochastic Restricted Liu Type estimator for SUR model
نویسندگان
چکیده
منابع مشابه
Jackknifed Liu-type Estimator in Poisson Regression Model
The Liu estimator has consistently been demonstrated to be an attractive shrinkage method for reducing the effects of multicollinearity. The Poisson regression model is a well-known model in applications when the response variable consists of count data. However, it is known that multicollinearity negatively affects the variance of the maximum likelihood estimator (MLE) of the Poisson regressio...
متن کاملStochastic Restricted Two-Parameter Estimator in Linear Mixed Measurement Error Models
In this study, the stochastic restricted and unrestricted two-parameter estimators of fixed and random effects are investigated in the linear mixed measurement error models. For this purpose, the asymptotic properties and then the comparisons under the criterion of mean squared error matrix (MSEM) are derived. Furthermore, the proposed methods are used for estimating the biasing parameters. Fin...
متن کاملCombining the Liu-type Estimator and the Principal Component Regression Estimator
In this study a new two-parameter estimator which includes the ordinary least squares (OLS), the principal components regression (PCR) and the Liu-type estimator is proposed. Conditions for the superiority of this new estimator over the PCR, r-k class estimator and Liu-type estimator are derived. Furthermore the performance of this estimator is compared with the other estimators in different co...
متن کاملStochastic MV-PURE Estimator - Robust Reduced-Rank Estimator for Stochastic Linear Model
This paper proposes a novel linear estimator named stochastic MV-PURE estimator, developed for the stochastic linear model, and designed to provide improved performance over the linear minimum mean square error (MMSE) Wiener estimator in cases prevailing in practical, real-world settings, where at least some of the second-order statistics of the random vectors under consideration are only imper...
متن کاملA Stochastic Restricted Principal Components Regression Estimator in the Linear Model
We propose a new estimator to combat the multicollinearity in the linear model when there are stochastic linear restrictions on the regression coefficients. The new estimator is constructed by combining the ordinary mixed estimator (OME) and the principal components regression (PCR) estimator, which is called the stochastic restricted principal components (SRPC) regression estimator. Necessary ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pakistan Journal of Statistics and Operation Research
سال: 2018
ISSN: 2220-5810,1816-2711
DOI: 10.18187/pjsor.v14i4.2302