Statistical summability (C,1) and a Korovkin type approximation theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Summability and Korovkin Type Approximation Theorem on Modular Spaces

In this paper, using a matrix summability method we obtain a Korovkin type approximation theorem for a sequence of positive linear operators defined on a modular space.

متن کامل

Korovkin type approximation theorem for functions of two variables through statistical A-summability

* Correspondence: [email protected] Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India Full list of author information is available at the end of the article Abstract In this article, we prove a Korovkin type approximation theorem for a function of two variables by using the notion of statistical A-summability. We also study the rate of statistical A-summability of p...

متن کامل

Generalized statistical summability of double sequences and Korovkin type approximation theorem

In this paper, we introduce the notion of statistical (λ, μ)-summability and find its relation with (λ, μ)-statistical convergence. We apply this new method to prove a Korovkin type approximation theorem for functions of two variables. Furthermore, we provide an example in support to show that our result is stronger than the previous ones.

متن کامل

A - Statistical extension of the Korovkin type approximation theorem

Let A = (a jn) be an infinite summability matrix. For a given sequence x := (xn), the A-transform of x, denoted by Ax := ((Ax) j), is given by (Ax) j = ∑n=1 a jnxn provided the series converges for each j ∈ N, the set of all natural numbers. We say that A is regular if limAx = L whenever limx = L [4]. Assume that A is a non-negative regular summability matrix. Then x = (xn) is said to be A-stat...

متن کامل

Korovkin Second Theorem via B-Statistical A-Summability

and Applied Analysis 3 f continuous on R. We know that C(R) is a Banach space with norm 󵄩󵄩󵄩f 󵄩󵄩󵄩∞ := sup x∈R 󵄨󵄨󵄨f (x) 󵄨󵄨󵄨 , f ∈ C (R) . (12) We denote by C 2π (R) the space of all 2π-periodic functions f ∈ C(R) which is a Banach space with 󵄩󵄩󵄩f 󵄩󵄩󵄩2π = sup t∈R 󵄨󵄨󵄨f (t) 󵄨󵄨󵄨 . (13) The classical Korovkin first and second theorems statewhatfollows [15, 16]: Theorem I. Let (T n ) be a sequence of p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2012

ISSN: 1029-242X

DOI: 10.1186/1029-242x-2012-172