Statistical properties of convex clustering
نویسندگان
چکیده
منابع مشابه
Statistical properties of earthquakes clustering
Often in nature the temporal distribution of inhomogeneous stochastic point processes can be modeled as a realization of renewal Poisson processes with a variable rate. Here we investigate one of the classical examples, namely, the temporal distribution of earthquakes. We show that this process strongly departs from a Poisson statistics for both catalogue and sequence data sets. This indicate t...
متن کاملA Clustering Based Location-allocation Problem Considering Transportation Costs and Statistical Properties (RESEARCH NOTE)
Cluster analysis is a useful technique in multivariate statistical analysis. Different types of hierarchical cluster analysis and K-means have been used for data analysis in previous studies. However, the K-means algorithm can be improved using some metaheuristics algorithms. In this study, we propose simulated annealing based algorithm for K-means in the clustering analysis which we refer it a...
متن کاملCORRELATION AND CLUSTERING Statistical properties of galaxy large scale structures
In this lecture we clarify the basic difference between the correlation properties for systems characterized by small or large fluctuations. The concepts of correlation length, homogeneity scale, scale invariance and criticality are discussed as well. We relate these concepts to the interpretation of galaxy clsutering.
متن کاملSparse Convex Clustering
Convex clustering, a convex relaxation of k-means clustering and hierarchical clustering, has drawn recent attentions since it nicely addresses the instability issue of traditional nonconvex clustering methods. Although its computational and statistical properties have been recently studied, the performance of convex clustering has not yet been investigated in the high-dimensional clustering sc...
متن کاملStatistical Limits of Convex Relaxations
Many high dimensional sparse learning problems are formulated as nonconvex optimization. A popular approach to solve these nonconvex optimization problems is through convex relaxations such as linear and semidefinite programming. In this paper, we study the statistical limits of convex relaxations. Particularly, we consider two problems: Mean estimation for sparse principal submatrix and edge p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2015
ISSN: 1935-7524
DOI: 10.1214/15-ejs1074