Statistical Manifolds with almost Quaternionic Structures and Quaternionic Kähler-like Statistical Submersions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Manifolds with almost Quaternionic Structures and Quaternionic Kähler-like Statistical Submersions

In this paper we investigate statistical manifolds with almost quaternionic structures. We define the concept of quaternionic Kähler-like statistical manifold and derive the main properties of quaternionic Kähler-like statistical submersions, extending in a new setting some previous results obtained by K. Takano concerning statistical manifolds endowed with almost complex and almost contact str...

متن کامل

almost-quaternionic Hermitian manifolds

In this note we prove that if the fundamental 4-form of an almost-quaternionic Hermitian manifold (M,Q, g) of dimension 4n ≥ 8 satisfies the conformal-Killing equation, then (M,Q, g) is quaternionic-Kähler.

متن کامل

Almost Hermitian Structures and Quaternionic Geometries

Gray & Hervella gave a classification of almost Hermitian structures (g, I) into 16 classes. We systematically study the interaction between these classes when one has an almost hyper-Hermitian structure (g, I, J,K). In general dimension we find at most 167 different almost hyper-Hermitian structures. In particular, we obtain a number of relations that give hyperKäher or locally conformal hyper...

متن کامل

Institute for Mathematical Physics Hypercomplex Structures Associated to Quaternionic Manifolds Hypercomplex Structures Associated to Quaternionic Manifolds

If M is a quaternionic manifold and P is an S 1-instanton over M , then Joyce constructed a hypercomplex manifold we call P (M) over M. These hypercomplex manifolds admit a U(2)-action of a special type permuting the complex structures. We show that up to double covers, all such hypercomplex manifolds arise in this way. Examples, including that of a hypercomplex structure on SU(3), show the nec...

متن کامل

Fano Manifolds, Contact Structures, and Quaternionic Geometry

Let Z be a compact complex (2n+1)-manifold which carries a complex contact structure, meaning a codimension-1 holomorphic sub-bundle D ⊂ TZ which is maximally non-integrable. If Z admits a Kähler-Einstein metric of positive scalar curvature, we show that it is the Salamon twistor space of a quaternion-Kähler manifold (M, g). If Z also admits a second complex contact structure D̃ 6= D, then Z = C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Entropy

سال: 2015

ISSN: 1099-4300

DOI: 10.3390/e17096213