Statistical estimation of ergodic Markov chain kernel over discrete state space
نویسندگان
چکیده
We investigate the statistical complexity of estimating parameters a discrete-state Markov chain kernel from single long sequence state observations. In finite case, we characterize (modulo logarithmic factors) minimax sample estimation with respect to operator infinity norm, while in countably infinite analyze problem natural entry-wise norm derived total variation. show that both cases, is governed by mixing properties unknown chain, for which, finite-state there are known finite-sample estimators fully empirical confidence intervals.
منابع مشابه
Ergodic Theory for Countable State Space Markov Chains
Here we want to see to what extent the results from Doeblin’s theory for finite state spaces extend to the case when the state space is countably infinite. Throughout we will use π to denote the row vector whose jth component is πj = ( E[ρj |X0 = j] )−1. Theorem (A). If j is transient, then πj = 0 = limn→∞(P)ij for all i. Proof. Because P(ρj = ∞|X0 = j) > 0, it is clear that πj = 0. Thus, all t...
متن کاملAN APPLICATION OF TRAJECTORIES AMBIGUITY IN TWO-STATE MARKOV CHAIN
In this paper, the ambiguity of nite state irreducible Markov chain trajectories is reminded and is obtained for two state Markov chain. I give an applicable example of this concept in President election
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولMarkov chain Monte Carlo for continuous-time discrete-state systems
A variety of phenomena are best described using dynamical models which operate on a discrete state space and in continuous time. Examples include Markov (and semiMarkov) jump processes, continuous-time Bayesian networks, renewal processes and other point processes. These continuous-time, discrete-state models are ideal building blocks for Bayesian models in fields such as systems biology, genet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bernoulli
سال: 2021
ISSN: ['1573-9759', '1350-7265']
DOI: https://doi.org/10.3150/20-bej1248