Statistical convergence in g-metric spaces

نویسندگان

چکیده

The purpose of this paper is to define statistically convergent sequences with respect the metrics on generalized metric spaces (g-metric spaces) and investigate basic properties statistical form convergence.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On statistical type convergence in uniform spaces

The concept of ${mathscr{F}}_{st}$-fundamentality is introduced in uniform spaces, generated by some filter ${mathscr{F}}$. Its equivalence to the concept of ${mathscr{F}}$-convergence in uniform spaces is proved. This convergence generalizes many kinds of convergence, including the well-known statistical convergence.

متن کامل

Statistical uniform convergence in $2$-normed spaces

 The concept of statistical convergence in $2$-normed spaces for double sequence was introduced in [S. Sarabadan and S. Talebi, {it Statistical convergence of double sequences  in $2$-normed spaces }, Int. J. Contemp. Math. Sci. 6 (2011) 373--380]. In the first, we introduce concept strongly statistical convergence in $2$-normed spaces and generalize some results. Moreover,  we define the conce...

متن کامل

A note on convergence in fuzzy metric spaces

The sequential $p$-convergence in a fuzzy metric space, in the sense of George and Veeramani, was introduced by D. Mihet as a weaker concept than convergence. Here we introduce a stronger concept called $s$-convergence, and we characterize those fuzzy metric spaces in which convergent sequences are $s$-convergent. In such a case $M$ is called an $s$-fuzzy metric. If $(N_M,ast)$ is a fuzzy metri...

متن کامل

Strong $I^K$-Convergence in Probabilistic Metric Spaces

In this paper we introduce strong $I^K$-convergence of functions which is common generalization of strong $I^*$-convergence of functions in probabilistic metric spaces. We also define and study strong $I^{K}$-limit points of functions in same space.

متن کامل

Fractals in G-Metric Spaces

The theory of iterated function systems (IFS) on complete metric spaces appears in almost all fractal based algorithms used for the purpose of compression of the images and their representation as well. Through a simple mathematical model, IFS technique provides an important tool for description and manipulation of the complex fractal attractors. In this paper we study the iterated function sys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2022

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2205461a