Statistical Analysis of the Multichannel Wiener Filter Using a Bivariate Normal Distribution for Sample Covariance Matrices
نویسندگان
چکیده
منابع مشابه
Perceptually-Inspired Processing for Multichannel Wiener Filter
Binaural noise-reduction techniques based on Multichannel Wiener filter (MWF) have been reported as promissory candidates to be used in binaural hearing aids because of their effective SNR improvement at any arbitrary direction of arrival of the target signal and the preservation of localization cues. There are different MWF techniques derived in the FFT domain. The use of an FFT-based processi...
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولReduction of Microphone Leakage Using Multichannel Wiener Filter
Microphone leakage is one of the most prevalent problems in audio applications involving multiple instruments and multiple microphones. Currently, sound engineers have limited solutions available to them. In this paper, the applicability of two widely used signal enhancement methods to this problem is discussed, namely blind source separation and noise suppression. By extending previous work, i...
متن کاملA Clt for Regularized Sample Covariance Matrices
We consider the spectral properties of a class of regularized estimators of (large) empirical covariance matrices corresponding to stationary (but not necessarily Gaussian) sequences, obtained by banding. We prove a law of large numbers (similar to that proved in the Gaussian case by Bickel and Levina), which implies that the spectrum of a banded empirical covariance matrix is an efficient esti...
متن کاملEigenvalue Distribution of Large Sample Covariance Matrices of Linear Processes
We derive the distribution of the eigenvalues of a large sample covariance matrix when the data is dependent in time. More precisely, the dependence for each variable i = 1, . . . , p is modelled as a linear process (Xi,t)t=1,...,n = ( ∑∞ j=0 cjZi,t−j)t=1,...,n, where {Zi,t} are assumed to be independent random variables with finite fourth moments. If the sample size n and the number of variabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE/ACM Transactions on Audio, Speech, and Language Processing
سال: 2018
ISSN: 2329-9290,2329-9304
DOI: 10.1109/taslp.2018.2800283