Star complements and exceptional graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Star complements and exceptional graphs

Let G be a finite graph of order n with an eigenvalue μ of multiplicity k. (Thus the μ-eigenspace of a (0, 1)-adjacency matrix of G has dimension k.) A star complement for μ in G is an induced subgraph G−X of G such that |X| = k and G−X does not have μ as an eigenvalue. An exceptional graph is a connected graph, other than a generalized line graph, whose eigenvalues lie in [−2,∞). We establish ...

متن کامل

Star Complements and Maximal Exceptional Graphs

If G is a maximal exceptional graph then either (a) G is the cone over a graph switching-equivalent to the line graph L(K8) or (b) G has K8 as a star complement for the eigenvalue −2 (or both). In case (b) it is shown how G can be constructed from K8 using intersecting families of 3-sets.

متن کامل

Star Complements and Connectivity in Finite Graphs

Let G be a finite graph with H as a star complement for an eigenvalue other than 0 or −1. Let κ(G), δ(G) denote respectively the vertex-connectivity and minimum degree of G. We prove that κ(G) is controlled by δ(G) and κ(H). In particular, for each k ∈ IN there exists a smallest non-negative integer f(k) such that κ(G) ≥ k whenever κ(H) ≥ k and δ(G) ≥ f(k). We show that f(1) = 0, f(2) = 2, f(3)...

متن کامل

Regular Star Complements in Strongly Regular Graphs

We prove that, aside from the complete multipartite graphs and graphs of Steiner type, there are only finitely many connected strongly regular graphs with a regular star complement of prescribed degree s ∈ IN . We investigate the possible parameters when s ≤ 5. AMS Classification: 05C50

متن کامل

A Database of Star Complements of Graphs

We take G to be an undirected graph without loops or multiple edges, with vertex set V (G) = f1; : : : ; ng, and with (0; 1)-adjacency matrix A. Let P denote the orthogonal projection of IR onto the eigenspace E( ) of A, and let fe1; : : : ; eng be the standard orthonormal basis of IR. Since E( ) is spanned by the vectors Pej (j = 1; : : : ; n) there exists X V (G) such that the vectors Pej (j ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2007

ISSN: 0024-3795

DOI: 10.1016/j.laa.2007.01.008