Staircase algebras and graded nilpotent pairs
نویسندگان
چکیده
منابع مشابه
Nilpotent pairs in semisimple Lie algebras and their characteristics
In a recent article [Gi99], V.Ginzburg introduced and studied in depth the notion of a principal nilpotent pair in a semisimple Lie algebra g. He also obtained several results for more general pairs. As a next step, we considered in [Pa99] almost principal nilpotent pairs. The aim of this paper is to make a contribution to the general theory of nilpotent pairs. Roughly speaking, a nilpotent pai...
متن کاملNILPOTENT GRAPHS OF MATRIX ALGEBRAS
Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...
متن کاملQuantum cluster algebras and quantum nilpotent algebras.
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the correspondin...
متن کاملNil, nilpotent and PI-algebras
The notions of nil, nilpotent or PI-rings (= rings satisfying a polynomial identity) play an important role in the ring theory (see e.g. [8], [11], [20]). Banach algebras with these properties have been studied considerably less and the existing results are scattered in literature. The only exception is the work of Krupnik [13], where the Gelfand theory of Banach PI-algebras is presented. Howev...
متن کاملDifferential Gerstenhaber Algebras Associated to Nilpotent Algebras
This article provides a complete description of the differential Gerstenhaber algebras of all nilpotent complex structures on any real six-dimensional nilpotent algebra. As an application, we classify all pseudo-Kählerian complex structures on six-dimensional nilpotent algebras such that the differential Gerstenhaber algebra of its complex structure is quasi-isomorphic to that of its symplectic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2017
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2016.10.011