Stacked Denoise Autoencoder Based Feature Extraction and Classification for Hyperspectral Images

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stacked Robust Autoencoder for Classification

In this work we propose an lp-norm data fidelity constraint for training the autoencoder. Usually the Euclidean distance is used for this purpose; we generalize the l2-norm to the lp-norm; smaller values of p make the problem robust to outliers. The ensuing optimization problem is solved using the Augmented Lagrangian approach. The proposed lp -norm Autoencoder has been tested on benchmark deep...

متن کامل

IFGF Based Feature Extraction of Hyperspectral Images

Hyperspectral sensors collect information as a set of images represented by different bands. Hyperspectral images are threedimensional images with sometimes over 100 bands where as regular images have only three bands: red, green and blue. Each pixel has a hyperspectral signature that represents different materials. Hyperspectral images can be used for geology, forestry and agriculture mapping,...

متن کامل

Feature extraction of hyperspectral images using boundary semi-labeled samples and hybrid criterion

Feature extraction is a very important preprocessing step for classification of hyperspectral images. The linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it is not sufficiently flexible to cope with the multi-modal distributed data. We propose a new fea...

متن کامل

a preprocessing stage before the feature extraction procedure in classification of hyperspectral images data

hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. however, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Sensors

سال: 2016

ISSN: 1687-725X,1687-7268

DOI: 10.1155/2016/3632943