Stable minimal surfaces in $\textbf {R}^4$ with degenerate Gauss map

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Gauss Map of Minimal Surfaces in R

In this paper, we prove effective estimates for the number of exceptional values and the totally ramified value number for the Gauss map of pseudo-algebraic minimal surfaces in Euclidean four-space and give a kind of unicity theorem.

متن کامل

The Gauss Map of Minimal Surfaces in the Heisenberg Group

We study the Gauss map of minimal surfaces in the Heisenberg group Nil3 endowed with a left-invariant Riemannian metric. We prove that the Gauss map of a nowhere vertical minimal surface is harmonic into the hyperbolic plane H. Conversely, any nowhere antiholomorphic harmonic map into H is the Gauss map of a nowhere vertical minimal surface. Finally, we study the image of the Gauss map of compl...

متن کامل

L_1 operator and Gauss map of quadric surfaces

The quadrics are all surfaces that can be expressed as a second degree polynomialin x, y and z. We study the Gauss map G of quadric surfaces in the 3-dimensional Euclidean space R^3 with respect to the so called L_1 operator ( Cheng-Yau operator □) acting on the smooth functions defined on the surfaces. For any smooth functions f defined on the surfaces, L_f=tr(P_1o hessf), where P_1 is t...

متن کامل

Stable Minimal Surfaces

Let M<=R be a minimal surface. A domain Z><= M is an open connected set with compact closure D and such that its boundary dD is a finite union of piecewise smooth curves. We say that D is stable if D is a minimum for the area function of the induced metric, for all variations of D which keep dD fixed. In this note we announce the following estimate of the "size" of a stable minimal surface. We ...

متن کامل

On the Gauss Curvature of Minimal Surfaces!?)

1. Summary of results. The following is known: let 5 be a minimal surface defined by z=f(x, y) over the region D:x2+y2<R2, and let p be the point of S over the origin. Let W= (1+fl+fl)112 at p. Then the Gauss curvature K at p satisfies \K\ Sc/R2W2. The best numerical value of c known previously was 12.25. This inequality is simultaneously sharpened and generalized. First of all, it is proved th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2003

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-03-07332-5