Stabilization for the Wave Equation with Singular Kelvin–Voigt Damping
نویسندگان
چکیده
منابع مشابه
Damping for the elastic wave equation
Résumé: Le but de ce projet est une investigation des techniques d’amortissement pour l’équation d’onde. Cette étude est intéressante tant du point de vue de la physique et que de l’analyse numérique. En effet l’amortissement apparâıt fréquemment dans les systèmes avec friction. Du point de vue mathématique, l’amortissement donne une meilleure régularité de l’équation élastique qui est importan...
متن کاملStabilization of the Kawahara Equation with Localized Damping
We study the stabilization of global solutions of the Kawahara (K) equation in a bounded interval, under the effect of a localized damping mechanism. The Kawahara equation is a model for small amplitude long waves. Using multiplier techniques and compactness arguments we prove the exponential decay of the solutions of the (K) model. The proof requires of a unique continuation theorem and the sm...
متن کاملUniform stabilization of solutions to a quasilinear wave equation with damping and source terms
In this note we prove the exponential decay of solutions of a quasilinear wave equation with linear damping and source terms.
متن کاملStabilization for the semilinear wave equation with geometric control condition
In this article, we prove the exponential stabilization of the semilinear wave equation with a damping effective in a zone satisfying the geometric control condition only. The nonlinearity is assumed to be subcritical, defocusing and analytic. The main novelty compared to previous results, is the proof of a unique continuation result in large time for some undamped equation. The idea is to use ...
متن کاملCritical Exponent for a Nonlinear Wave Equation with Damping
It is well known that if the damping is missing, the critical exponent for the nonlinear wave equation gu=|u| p is the positive root p0(n) of the equation (n&1) p&(n+1) p&2=0, where n 2 is the space dimension (for p0(1)= , see Sideris [14]). The proof of this fact, known as Strauss' conjecture [17], took more than 20 years of effort, beginning with Glassey doi:10.1006 jdeq.2000.3933, available ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archive for Rational Mechanics and Analysis
سال: 2019
ISSN: 0003-9527,1432-0673
DOI: 10.1007/s00205-019-01476-4