Stability Properties for the Delay Integro-Differential Equation

نویسندگان

چکیده

In this paper stability inequalities for the linear nonhomogeneous Volterra delay integro-differential equation (VDIDE) is being established. The particular problems are encountered to show applicability of method and confirm predicted theoretical analysis.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability properties of second order delay integro-differential equations

A basic theorem on the behavior of solutions of scalar linear second order delay integro-differential equations is established. As a consequence of this theorem, a stability criterion is obtained.

متن کامل

Periodic solution for a delay integro-differential equation in biomathematics

Sufficient conditions for the existence and uniqueness of periodic solution of a delay integro-differential equation which arise in biomathematics are given. The results use a bidimensional variant of the Perov’s fixed point theorem. AMSMathematics Subject Classification: Primary 45J05, Secondary 34A12, 65R20, 65D32.

متن کامل

On the Stability of Delay Integro-differential Equations

Some new stability results are given for a delay integro-differential equation. A basis theorem on the behavior of solutions of delay integro-differential equations is established. As a consequence of this theorem, a stability criterion is obtained.

متن کامل

The stability relation between ordinary and delay-integro-differential equations

This paper deals with the exponential stability of a class of nonlinear delay-integrodifferential equations of the form ẋ(t) = f ( t, x(t), x(t − τ1(t)), ∫ t t−τ2(t) g(t, s, x(s))ds ) , t ≥ t0, where τi(t) > 0 for i = 1, 2 and t ≥ t0. The stability relation between ordinary and delay-integro-differential equations is given. It is shown under some suitable conditions that a delay-integro-differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Gazi university journal of science

سال: 2023

ISSN: ['2147-1762']

DOI: https://doi.org/10.35378/gujs.988728