Stability of Pexiderized quadratic functional equation on a set of measure zero
نویسندگان
چکیده
منابع مشابه
stability of the quadratic functional equation
In the present paper a solution of the generalizedquadratic functional equation$$f(kx+ y)+f(kx+sigma(y))=2k^{2}f(x)+2f(y),phantom{+} x,yin{E}$$ isgiven where $sigma$ is an involution of the normed space $E$ and$k$ is a fixed positive integer. Furthermore we investigate theHyers-Ulam-Rassias stability of the functional equation. TheHyers-Ulam stability on unbounded domains is also studied.Applic...
متن کاملIntuitionistic fuzzy stability of a quadratic and quartic functional equation
In this paper, we prove the generalized Hyers--Ulamstability of a quadratic and quartic functional equation inintuitionistic fuzzy Banach spaces.
متن کامل4 Orthogonal stability of the Pexiderized quadratic equation ∗
The Hyers–Ulam–Rassias stability of the conditional quadratic functional equation of Pexider type f (x+y)+f (x−y) = 2g(x)+2h(y), x ⊥ y is proved where ⊥ is the orthogonality in the sense of Rätz.
متن کاملFuzzy Stability of the Pexiderized Quadratic Functional Equation: A Fixed Point Approach
The fixed point alternative methods are implemented to give generalized Hyers-Ulam-Rassias stability for the Pexiderized quadratic functional equation in the fuzzy version. This method introduces a metrical context and shows that the stability is related to some fixed point of a suitable operator.
متن کاملOn the stability of the Pexiderized cubic functional equation in multi-normed spaces
In this paper, we investigate the Hyers-Ulam stability of the orthogonally cubic equation and Pexiderized cubic equation [f(kx+y)+f(kx-y)=g(x+y)+g(x-y)+frac{2}{k}g(kx)-2g(x),]in multi-normed spaces by the direct method and the fixed point method. Moreover, we prove the Hyers-Ulam stability of the $2$-variables cubic equation [ f(2x+y,2z+t)+f(2x-y,2z-t) =2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonlinear Sciences and Applications
سال: 2016
ISSN: 2008-1901
DOI: 10.22436/jnsa.009.06.93