Stability of Ordinary Differential Equations with Colored Noise Forcing

نویسندگان
چکیده

منابع مشابه

Stability of Ordinary Differential Equations with Colored Noise Forcing

We present a perturbation method for determining the moment stability of linear ordinary differential equations with parametric forcing by colored noise. In particular, the forcing arises from passing white noise through an nth order filter. We carry out a perturbation analysis based on a small parameter ε that gives the amplitude of the forcing. Our perturbation analysis is based on a ladder o...

متن کامل

Stability of First Order Ordinary Differential Equations with Colored Noise Forcing

We present a method for determining the stability of a class of stochastically forced ordinary differential equations, where the forcing term can be obtained by passing white noise through a filter of arbitrarily high degree. We use the Fokker-Planck equation to write a partial differential equation for the second moments, which we turn into an eigenvalue problem for a second-order differential...

متن کامل

Ulam Stability of Ordinary Differential Equations

In this paper we present four types of Ulam stability for ordinary differential equations: Ulam-Hyers stability, generalized UlamHyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-HyersRassias stability. Some examples and counterexamples are given.

متن کامل

Global Stability of Non-Solvable Ordinary Differential Equations With Applications

Different from the system in classical mathematics, a Smarandache system is a contradictory system in which an axiom behaves in at least two different ways within the same system, i.e., validated and invalided, or only invalided but in multiple distinct ways. Such systems exist extensively in the world, particularly, in our daily life. In this paper, we discuss such a kind of Smarandache system...

متن کامل

Ordinary Differential Equations with Fractalnoisef

The diierential equation dx(t) = a(x(t); t) dZ (t) + b(x(t); t) dt for fractal-type functions Z (t) is determined via fractional calculus. Under appropriate conditions we prove existence and uniqueness of a local solution by means of its representation x(t) = h(y(t) +Z(t); t) for certain C 1-functions h and y. The method is also applied to It^ o stochastic diierential equations and leads to a g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Control and Optimization

سال: 2013

ISSN: 0363-0129,1095-7138

DOI: 10.1137/110855302