Stability of Building Structural Engineering Based on Fractional Differential Equations
نویسندگان
چکیده
Abstract The compression rod is an important stress member of house building and bridge structure. When the load on reaches critical load, entire structure will lose its stability. We use fractional-order differential equation curvature to bend apply fourth-order equation's general solution establish rod's stability model in construction engineering. In this paper, discrete boundary conditions are applied algebraic system by substitution method obtain characteristic about buckling rod. research found that proposed paper simple. relation deduced reasonable efficient.
منابع مشابه
Cascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability
This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...
متن کاملStudy on stability analysis of distributed order fractional differential equations with a new approach
The study of the stability of differential equations without its explicit solution is of particular importance. There are different definitions concerning the stability of the differential equations system, here we will use the definition of the concept of Lyapunov. In this paper, first we investigate stability analysis of distributed order fractional differential equations by using the asympto...
متن کاملExistence of Ulam Stability for Iterative Fractional Differential Equations Based on Fractional Entropy
In this study, we introduce conditions for the existence of solutions for an iterative functional differential equation of fractional order. We prove that the solutions of the above class of fractional differential equations are bounded by Tsallis entropy. The method depends on the concept of Hyers-Ulam stability. The arbitrary order is suggested in the sense of Riemann-Liouville calculus.
متن کاملA survey on the stability of fractional differential equations
Recently, fractional calculus has attracted much attention since it plays an important role in many fields of science and engineering. Especially, the study on stability of fractional differential equations appears to be very important. In this paper, a brief overview on the recent stability results of fractional differential equations and the analytical methods used are provided. These equatio...
متن کاملRandom fractional functional differential equations
In this paper, we prove the existence and uniqueness results to the random fractional functional differential equations under assumptions more general than the Lipschitz type condition. Moreover, the distance between exact solution and appropriate solution, and the existence extremal solution of the problem is also considered.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied mathematics and nonlinear sciences
سال: 2022
ISSN: ['2444-8656']
DOI: https://doi.org/10.2478/amns.2022.2.0111