Stability of additive-quadratic $\rho$-functional equations in Banach spaces: a fixed point approach

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fixed point approach to the stability of additive-quadratic-quartic functional equations

In this article, we introduce a class of the generalized mixed additive, quadratic and quartic functional equations and obtain their common solutions. We also investigate the stability of such modified functional equations in the non-Archimedean normed spaces by a fixed point method.

متن کامل

Approximate mixed additive and quadratic functional in 2-Banach spaces

In the paper we establish the general solution of the function equation f(2x+y)+f(2x-y) = f(x+y)+f(x-y)+2f(2x)-2f(x) and investigate the Hyers-Ulam-Rassias stability of this equation in 2-Banach spaces.

متن کامل

Approximate a quadratic mapping in multi-Banach spaces, a fixed point approach

Using the fixed point method, we prove the generalized Hyers-Ulam-Rassias stability of the following functional equation in multi-Banach spaces:begin{equation} sum_{ j = 1}^{n}fBig(-2 x_{j} + sum_{ i = 1, ineq j}^{n} x_{i}Big) =(n-6) fBig(sum_{ i = 1}^{n} x_{i}Big) + 9 sum_{ i = 1}^{n}f(x_{i}).end{equation}

متن کامل

A FIXED POINT APPROACH TO THE INTUITIONISTIC FUZZY STABILITY OF QUINTIC AND SEXTIC FUNCTIONAL EQUATIONS

The fixed point alternative methods are implemented to giveHyers-Ulam  stability for  the quintic functional equation $ f(x+3y)- 5f(x+2y) + 10 f(x+y)- 10f(x)+ 5f(x-y) - f(x-2y) = 120f(y)$ and thesextic functional equation $f(x+3y) - 6f(x+2y) + 15 f(x+y)- 20f(x)+15f(x-y) - 6f(x-2y)+f(x-3y) = 720f(y)$   in the setting ofintuitionistic fuzzy normed spaces (IFN-spaces).  This methodintroduces a met...

متن کامل

A Fixed Point Approach to the Stability of a Quadratic-Additive Type Functional Equation in Non-Archimedean Normed Spaces

In this paper, we investigate the generalized Hyers–Ulam stability for the functional equation f(ax+y)+af(y−x)− a(a+ 1) 2 f(x)− a(a+ 1) 2 f(−x)− (a+1)f(y) = 0 in non-Archimedean normed spaces. Mathematics Subject Classification: 39B52, 39B82

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Nonlinear Sciences and Applications

سال: 2017

ISSN: 2008-1898,2008-1901

DOI: 10.22436/jnsa.010.03.34