Stability for a Nonlinear Second Order ODE

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability Analysis for Nonlinear Second Order Differential Equations with Impulses∗

In this paper we investigate the impulsive equation { (r(t)x′) + a(t)x + f (t, x, x′) = p(t), t ≥ t0, t 6= tk, x(tk) = ckx(tk − 0), x(tk) = dkx(tk − 0), k = 1, 2, 3, . . . , and establish a couple of criteria to guarantee the equations of this type to possess the stability, including boundedness and asymptotic properties. Some examples are given to illustrate our results and the last one shows ...

متن کامل

Sharp decay estimates of the solutions to a class of nonlinear second order ODE

We establish the rate of decay to 0 and we study the oscillation properties of solutions to the scalar second order ODE : u′′ + c|u′|αu′ + |u|u = 0 where c, α, β are positive constants. Various extensions (forced equation, system) are considered.

متن کامل

Uncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation

In this paper we consider the second order nonlinear neutral delay partial difference equation $Delta_nDelta_mbig(x_{m,n}+a_{m,n}x_{m-k,n-l}big)+ fbig(m,n,x_{m-tau,n-sigma}big)=b_{m,n}, mgeq m_{0},, ngeq n_{0}.$Under suitable conditions, by making use of the Banach fixed point theorem, we show the existence of uncountably many bounded positive solutions for the above partial difference equation...

متن کامل

On the stability of linear differential equations of second order

The aim of this paper is to investigate the Hyers-Ulam stability of the  linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$  $fin C[a,b]$ and $-infty

متن کامل

Second Order Converse Duality for Nonlinear Programming

Chandra and Abha [European J. Oper. Res. 122 (2000), 161-165] considered a nonlinear programming problem over cone constraints and presented the correct forms of its four types of duals formulated by Nanda and Das [European J. Oper. Res. 88 (1996) 572-577]. Yang et al. [Indian J. Pure Appl. Math. 35 (2004), 699-708] considered the same problem and discussed weak and strong duality for its four ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Funkcialaj Ekvacioj

سال: 2005

ISSN: 0532-8721

DOI: 10.1619/fesi.48.49