Stability Conditions of Bicomplex-Valued Hopfield Neural Networks
نویسندگان
چکیده
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Existence and Stability of a Unique Equilibrium in Continuous-Valued Discrete-Time Asynchronous Hopfield Neural Networks
It is shown that the assumption of D-stability of the interconnection matrix, together with the standard assumptions on the activation functions, guarantee the existence of a unique equilibrium under a synchronous mode of operation as well as a class of asynchronous modes. For the synchronous mode, these assumptions are also shown to imply local asymptotic stability of the equilibrium. For the ...
متن کاملA new sufficient conditions of stability for discrete time non-autonomous delayed Hopfield neural networks
In this paper, we consider the uniform asymptotic stability, global asymptotic stability and global exponential stability of the equilibrium point of discrete Hopfield neural networks with delays. Some new stability criteria for system are derived by using the Lyapunov functional method and the linear matrix inequality approach, for estimating the upper bound of Lyapunov functional derivative. ...
متن کاملGlobal Stability of Delayed Hopfield Neural Networks under Dynamical Thresholds
We study dynamical behavior of a class of cellular neural networks system with distributed delays under dynamical thresholds. By using topological degree theory and Lyapunov functions, some new criteria ensuring the existence, uniqueness, global asymptotic stability, and global exponential stability of equilibrium point are derived. In particular, our criteria generalize and improve some known ...
متن کاملExponential stability of implicit Euler, discrete-time Hopfield neural networks
The exponential stability of continuous-time Hopfield neural networks is not preserved when implemented on digital computers by means of explicit numerical methods, whereas the implicit (or backward) Euler method preserves this exponential stability under exactly the same sufficient conditions as those previously obtained for the continuous model. The proof is based on the nonlinear measure app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computation
سال: 2021
ISSN: 0899-7667,1530-888X
DOI: 10.1162/neco_a_01350