Stability and convergence of nonconforming hp finite-element methods
نویسندگان
چکیده
منابع مشابه
Stability and Convergence of Nonconforming /AJI Finite-Element Methods
The stability and convergence of nonconforming hp finite-element methods, in particular, the mortar finite-element method and its variants, are established based on a new stability measure for these methods. Using a generalized eigenvalue analysis, estimates for this measure are computed numerically. Our numerical results demonstrate that these nonconforming methods prove to be good candidates ...
متن کاملSaturation estimates for hp-finite element methods
In this paper we will prove saturation estimates for the adaptive hp-finite element method for linear, second order partial differential equations. More specifically we will consider a sequence of nested finite element discretizations where we allow for both, local mesh refinement and locally increasing the polynomial order. We will prove that the energy norm of the error on the finer level can...
متن کاملConvergence of a Nonconforming Multiscale Finite Element Method
The multiscale finite element method (MsFEM) [T. Y. Hou, X. H. Wu, and Z. Cai, Math. Comp., 1998, to appear; T. Y. Hou and X. H. Wu, J. Comput. Phys., 134 (1997), pp. 169–189] has been introduced to capture the large scale solutions of elliptic equations with highly oscillatory coefficients. This is accomplished by constructing the multiscale base functions from the local solutions of the ellip...
متن کاملLocal Multilevel Methods for Adaptive Nonconforming Finite Element Methods
In this paper, we propose a local multilevel product algorithm and its additive version for linear systems arising from adaptive nonconforming finite element approximations of second order elliptic boundary value problems. The abstract Schwarz theory is applied to analyze the multilevel methods with Jacobi or Gauss-Seidel smoothers performed on local nodes on coarse meshes and global nodes on t...
متن کاملOn the Convergence of Adaptive Nonconforming Finite Element Methods for a Class of Convex Variational Problems
We formulate and analyze an adaptive nonconforming finite element method for the solution of convex variational problems. The class of minimization problems we admit includes highly singular problems for which no Euler–Lagrange equation (or inequality) is available. As a consequence, our arguments only use the structure of the energy functional. We are nevertheless able to prove convergence of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2003
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(03)90087-3