Stability and bifurcation analysis of a diffusive modified Leslie-Gower prey-predator model with prey infection and Beddington DeAngelis functional response

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability and Bifurcation Analysis of a Delayed Leslie-Gower Predator-Prey System with Nonmonotonic Functional Response

and Applied Analysis 3 2. Linear Stability and Hopf Bifurcation Analysis for the System without Delay In order to reduce the number of parameters and simplify the calculus in system (4), introducing new variables t = rt, x (t) = x (t)

متن کامل

Hopf bifurcation analysis of a diffusive predator-prey model with Monod-Haldane response

In this paper, we have studied the diffusive predator-prey model with Monod-Haldane functional response. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated by analyzing the distribution of eigenvalues without diffusion. We also study the spatially homogeneous and non-homogeneous periodic solutions through all parameters of the system which are spati...

متن کامل

Stability and Hopf Bifurcation in a Diffusive Predator-Prey System with Beddington-DeAngelis Functional Response and Time Delay

and Applied Analysis 3 Under A1 , let u u − u∗, v v − v∗ and drop the bars for simplicity of notations, then 1.1 can be transformed into the following equivalent system: ut d1Δu t, x u u∗ 1 − u t − τ, x u∗ − s u u ∗ v v∗ m u u∗ n v v∗ , vt d2Δv t, x r u u∗ v v∗ m u u∗ n v v∗ − d v v∗ . 2.2 Let P u, v uv/ m u nv . By u∗ 1 − u∗ − su∗v∗/ m u∗ nv∗ 0 and −dv∗ ru∗v∗/ m u∗ nv∗ 0 2.2 becomes ut d1Δu t,...

متن کامل

Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response.

In any reaction-diffusion system of predator-prey models, the population densities of species are determined by the interactions between them, together with the influences from the spatial environments surrounding them. Generally, the prey species would die out when their birth rate is too low, the habitat size is too small, the predator grows too fast, or the predation pressure is too high. To...

متن کامل

Global stability and Hopf bifurcation in a delayed diffusive Leslie-Gower predator-prey System

In this paper, we consider a delayed diffusive Leslie–Gower predator–prey system with homogeneous Neumann boundary conditions. The stability/instability of the coexistence equilibrium and associated Hopf bifurcation are investigated by analyzing the characteristic equations. Furthermore, using the upper and lower solutions method, we give a sufficient condition on parameters so that the coexist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Heliyon

سال: 2021

ISSN: 2405-8440

DOI: 10.1016/j.heliyon.2021.e06193