SSAU-Net: A Spectral–Spatial Attention-Based U-Net for Hyperspectral Image Fusion

نویسندگان

چکیده

Compared with traditional remoting image, there is a large amount of spectral information in the hyperspectral image (HSI), which makes HSI better reflect actual condition surface features. However, due to limitations imaging conditions, tends have lower spatial resolution. In order overcome this issue, we propose spectral-spatial attention-based U-Net named SSAU-Net for and multispectral (MSI) fusion. The constructs attention module by coordinate-attention (CA) an efficient pyramid split (ESPA) module, can enhance image’s information. Meanwhile, proposed network fully extracts shallow deep features images, finally generates high-resolution (HR) images. state-of-the-art HSI-MSI fusion methods, experimental results verify that method has subjective objective effect.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation

Deep learning (DL) based semantic segmentation methods have been providing state-of-the-art performance in the last few years. More specifically, these techniques have been successfully applied to medical image classification, segmentation, and detection tasks. One deep learning technique, U-Net, has become one of the most popular for these applications. In this paper, we propose a Recurrent Co...

متن کامل

Attention-based CNN Matching Net

In this paper, we introduce attention-based CNN matching net (ACM-Net), an end-to-end neural network for question answering. ACM-Net matches between the given passage, query and multiple answer choices, and then it extracts features from passage and choices based on query information. We also propose a two-staged CNN architecture and a query-based attention mechanism in our model. These two com...

متن کامل

U-Net: Convolutional Networks for Biomedical Image Segmentation

There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables prec...

متن کامل

Automatic segmentation of glioma tumors from BraTS 2018 challenge dataset using a 2D U-Net network

Background: Glioma is the most common primary brain tumor, and early detection of tumors is important in the treatment planning for the patient. The precise segmentation of the tumor and intratumoral areas on the MRI by a radiologist is the first step in the diagnosis, which, in addition to the consuming time, can also receive different diagnoses from different physicians. The aim of this study...

متن کامل

An Attention-Based Deep Net for Learning to Rank

In information retrieval, learning to rank constructs a machine-based ranking model which given a query, sorts the search results by their degree of relevance or importance to the query. Neural networks have been successfully applied to this problem, and in this paper, we propose an attention-based deep neural network which better incorporates different embeddings of the queries and search resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Geoscience and Remote Sensing

سال: 2022

ISSN: ['0196-2892', '1558-0644']

DOI: https://doi.org/10.1109/tgrs.2022.3217168