Square root stress-sum index for graphs

نویسندگان

چکیده

The stress of a vertex is node centrality index, which has been introduced by Shimbel (1953). in graph the number geodesics (shortest paths) passing through it. In this paper, we introduce new topological index for graphs called square root sum using stresses vertices. Further, establish some inequalities, prove results and compute stress-sum standard graphs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Square Root Problem of Kato for the Sum of Operators

This paper is concerned with the square root problem of Kato for the ”sum” of linear operators in a Hilbert space H. Under suitable assumptions, we show that if A and B are respectively m-scetroial linear operators satisfying the square root problem of Kato. Then the same conclusion still holds for their ”sum”. As application, we consider perturbed Schrödinger operators.

متن کامل

The Extremal Graphs for (Sum-) Balaban Index of Spiro and Polyphenyl Hexagonal Chains

As highly discriminant distance-based topological indices, the Balaban index and the sum-Balaban index of a graph $G$ are defined as $J(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)D_{G}(v)}}$ and $SJ(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)+D_{G}(v)}}$, respectively, where $D_{G}(u)=sumlimits_{vin V}d(u,v)$ is the distance sum of vertex $u$ in $G$, $m$ is the n...

متن کامل

On Sum–Connectivity Index of Bicyclic Graphs

We determine the minimum sum–connectivity index of bicyclic graphs with n vertices and matching number m, where 2 ≤ m ≤ ⌊n2 ⌋, the minimum and the second minimum, as well as the maximum and the second maximum sum–connectivity indices of bicyclic graphs with n ≥ 5 vertices. The extremal graphs are characterized. MSC 2000: 05C90; 05C35; 05C07

متن کامل

The Maximum Balaban Index (Sum-Balaban Index) of Unicyclic Graphs

The Balaban index of a connected graph G is defined as J(G) = |E(G)| μ+ 1 ∑ e=uv∈E(G) 1 √ DG(u)DG(v) , and the Sum-Balaban index is defined as SJ(G) = |E(G)| μ+ 1 ∑ e=uv∈E(G) 1 √ DG(u)+DG(v) , where DG(u) = ∑ w∈V (G) dG(u,w), and μ is the cyclomatic number of G. In this paper, the unicyclic graphs with the maximum Balaban index and the maximum Sum-Balaban index among all unicyclic graphs on n v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proyecciones

سال: 2021

ISSN: ['0716-0917', '0717-6279']

DOI: https://doi.org/10.22199/issn.0717-6279-4362