Splitting Methods for Rotations: Application to Vlasov Equations
نویسندگان
چکیده
منابع مشابه
Splitting methods for Vlasov–Poisson and Vlasov–Maxwell equations
A rigorous convergence analysis of the Strang splitting algorithm for Vlasov-type equations in the setting of abstract evolution equations is provided. It is shown that, under suitable assumptions, the convergence is of second order in the time step τ . As an example, it is verified that the Vlasov–Poisson equations in 1+1 dimensions fit into the framework of this analysis. Further, numerical e...
متن کاملHamiltonian splitting for the Vlasov-Maxwell equations
— A new splitting is proposed for solving the Vlasov–Maxwell system. This splitting is based on a decomposition of the Hamiltonian of the Vlasov–Maxwell system and allows for the construction of arbitrary high order methods by composition (independent of the specific deterministic method used for the discretization of the phase space). Moreover, we show that for a spectral method in space this ...
متن کاملDiscontinuous Galerkin Methods for Vlasov-maxwell Equations
In this paper, we propose to use discontinuous Galerkin methods to solve the Vlasov-Maxwell system. Those methods are chosen because they can be designed systematically as accurate as one wants, meanwhile with provable conservation of mass and possibly also of the total energy. Such property in general is hard to achieve within other numerical method frameworks to simulate the Vlasov-Maxwell sy...
متن کاملOperator Splitting Methods for Wave Equations
Abstract The motivation for our studies is coming from simulation of earthquakes, that are modelled by elastic wave equations. In our paper we focus on stiff phanomenons for the wave equations. In the course of this article we discuss iterative operator splitting methods for wave equations motivated by realistic problems dealing with seismic sources and waves. The operator splitting methods are...
متن کاملSplitting Methods for Non-autonomousHamiltonian Equations
We present an algorithm for numerically integrating non-autonomous Hamiltonian differential equations. Special attention is paid to the separable case and, in particular, a new fourth-order splitting method is presented which in a certain measure is optimal. In combination with a new way of handling non-autonomous problems, the schemes we present are based on Magnus expansions and they show ver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2020
ISSN: 1064-8275,1095-7197
DOI: 10.1137/19m1273918