Sphere packing, helices and the polytope {3, 3, 5 }

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Packing Segments in a Convex 3-Polytope is NP-hard

We show it is NP-hard to pack the maximum number of segments in a convex 3-dimensional polytope. We show this packing problem is also NP-hard for general polygonal regions in the plane. This problem relates two streams of research, Kakeya set problems and packing problems.

متن کامل

5 J ul 2 00 3 Quotients of a Universal Locally Projective Polytope of type { 5 , 3 , 5 } ∗

This article examines the universal polytope P (of type {5, 3, 5}) whose facets are dodecahedra, and whose vertex figures are hemiicosahedra. The polytope is proven to be finite, and the structure of its group is identified. This information is used to classifiy the quotients of the polytope. A total of 145 quotients are found, including 69 section regular polytopes with the same facets and ver...

متن کامل

H-Representation of the Kimura-3 Polytope

Given a group-based Markov model on a tree, one can compute the vertex representation of a polytope which describes the associated toric variety. The half-space representation, however, is not easily computable. In the case of Z2 or Z2 × Z2, these polytopes have applications in the field of phylogenetics. We provide a half-space representation for the m-claw tree where G = Z2 × Z2, which corres...

متن کامل

A (5/3 + ε)-Approximation for Strip Packing

We study strip packing, which is one of the most classical two-dimensional packing problems: given a collection of rectangles, the problem is to find a feasible orthogonal packing without rotations into a strip of width 1 and minimum height. In this paper we present an approximation algorithm for the strip packing problem with absolute approximation ratio of 5/3 + ε for any ε > 0. This result s...

متن کامل

The sphere packing problem

Hales, T.C., The sphere packing problem, Journal of Computational and Applied Mathematics 44 (1992) 41-76. The sphere packing problem asks whether any packing of spheres of equal radius in three dimensions has density exceeding that of the face-centered-cubic lattice packing (of density IT/V%). This paper sketches a solution to this problem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The European Physical Journal D

سال: 2001

ISSN: 1434-6060

DOI: 10.1007/s100530170149