Spectral/hp discontinuous Galerkin methods for modelling 2D Boussinesq equations
نویسندگان
چکیده
منابع مشابه
Discontinuous Galerkin Methods for Partial Differential Equations
Day 1: Monday, September 26, 2011 Hybridized DG Method and Mimetic Finite Differences Franco Brezzi IUSS and IMATI-CNR, Pavia Via Ferrata 1, 27100 Pavia [email protected] Abstract: The talk will discuss the relationships between certain variants of Mimetic Finite Differences and the Hybridized version of DG methods for some very simple model problem. The talk will discuss the relationships be...
متن کاملDiscontinuous Galerkin Methods for Fractional Diffusion Equations
We consider the development and analysis of local discontinuous Galerkin methods for fractional diffusion problems, characterized by having fractional derivatives, parameterized by β ∈ [1, 2]. We show through analysis that one can construct a numerical flux which results in a scheme that exhibit optimal order of convergence O(hk+1) in the continuous range between pure advection (β = 1) and pure...
متن کاملDiscontinuous Galerkin Methods for Vlasov-maxwell Equations
In this paper, we propose to use discontinuous Galerkin methods to solve the Vlasov-Maxwell system. Those methods are chosen because they can be designed systematically as accurate as one wants, meanwhile with provable conservation of mass and possibly also of the total energy. Such property in general is hard to achieve within other numerical method frameworks to simulate the Vlasov-Maxwell sy...
متن کاملHybridizable discontinuous Galerkin projection methods for Navier-Stokes and Boussinesq equations
Schemes for the incompressible Navier-Stokes and Boussinesq equations are formulated and derived combining the novel Hybridizable Discontinuous Galerkin (HDG) method, a projection method, and Implicit-Explicit Runge-Kutta (IMEX-RK) time-integration schemes. We employ an incremental pressure correction and develop the corresponding HDG finite element discretization including consistent edge-spac...
متن کاملOn 2D elliptic discontinuous Galerkin methods
We discuss the discretization using discontinuous Galerkin (DG) formulation of an elliptic Poisson problem. Two commonly used DG schemes are investigated: the original average flux proposed by Bassi and Rebay (J. Comput. Phys. 1997; 131:267) and the local discontinuous Galerkin (LDG) (SIAM J. Numer. Anal. 1998; 35:2440–2463) scheme. In this paper we expand on previous expositions (Discontinuous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2006
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2005.07.017