Spectral Treatment of High-Order Emden–Fowler Equations Based on Modified Chebyshev Polynomials
نویسندگان
چکیده
This paper is devoted to proposing numerical algorithms based on the use of tau and collocation procedures, two widely used spectral approaches for treatment initial high-order linear non-linear equations singular type, especially those Emden–Fowler type. The class modified Chebyshev polynomials third-kind constructed. generalizes polynomials. A new formula that expresses first-order derivative in terms their original established. establishment this essential reducing a certain terminating hypergeometric function type 5F4(1). development our suggested begins with extraction operational matrix from formula. Expansion’s convergence study performed detail. Some illustrative examples Emden–Flower-type different orders are displayed. Our proposed compared some other methods literature. confirms accuracy high efficiency presented algorithms.
منابع مشابه
A spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations
In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...
متن کاملNumerical approximation based on the Bernouli polynomials for solving Volterra integro-differential equations of high order
In this article, an applied matrix method, which is based on Bernouli Polynomials, has been presented to find approximate solutions of high order Volterra integro-differential equations. Through utilizing this approach, the proposed equations reduce to a system of algebric equations with unknown Bernouli coefficients. A number of numerical illustrations have been solved to assert...
متن کاملEfficient Spectral-Galerkin Method II. Direct Solvers of Second- and Fourth-Order Equations Using Chebyshev Polynomials
Efficient direct solvers based on the Chebyshev-Galerkin methods for second and fourth order equations are presented. They are based on appropriate base functions for the Galerkin formulation which lead to discrete systems with special structured matrices which can be efficiently inverted. Numerical results indicate that the direct solvers presented in this paper are significantly more accurate...
متن کاملA spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems
In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...
متن کاملOn Multivariate Chebyshev Polynomials and Spectral Approximations on Triangles
In this paper we describe the use of multivariate Chebyshev polynomials in computing spectral derivations and Clenshaw–Curtis type quadratures. The multivariate Chebyshev polynomials give a spectrally accurate approximation of smooth multivariate functions. In particular we investigate polynomials derived from the A2 root system. We provide analytic formulas for the gradient and integral of A2 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2023
ISSN: ['2075-1680']
DOI: https://doi.org/10.3390/axioms12020099